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Abstract
We are working on North Sámi, an under-resourced language,
for which we have less than ten hours of transcribed speech
in total. Previously, we applied wav2vec 2.0 pretrained large
Transformer models to this data. However, error rates were still
high. Here, we present a series of system improvements to these
models, yielding minor performance improvements. We also
experiment with a slightly larger text corpus, which provides a
further minor performance improvement. Nonetheless, we con-
clude that more transcribed speech is needed, at least so that
standard size development and test sets can be created.
Index Terms: Speech Recognition, North Sámi, SSL

1. Introduction
In this work, we present our work with optimizing speech
recognition systems for North Sámi. We experiment with sys-
tem improvements, which are motivated by the under-resourced
scenario. Both on the North Sámi data, as well as on a simulated
under-resourced scenario on Finnish, we find our designed hy-
perparameter choices yield minor improvements. Additionally,
we find that some additional North Sámi text data also yields
marginal improvements. In the end, we conclude that more
transcribed speech in North Sámi is needed for substantial im-
provements to our systems.

In North Sámi we are working with very limited resources.
Because there are no official test sets, it is challenging to split
the data into training, validation, and test subsets of meaningful
size. The data is also limited in the number of speakers, so
creating and testing speaker-independent speech recognisers is
an additional difficulty.

Previously, we applied wav2vec 2.0 pretrained Transform-
ers to North Sámi [1]. We found that the hidden Markov model /
deep neural network (HMM/DNN) approach outperformed the
attention-based encoder-decoder (AED) approach, and thus are
continuing our work here focusing on HMM/DNN-systems.

2. Related work
North Sámi (Davvisámegiella) is the largest of the Sámi lan-
guages by both number of speakers and by the land area in
which it is spoken. It is spoken by approximately 20 000 to
25 000 people, in areas which fall inside Norway, Sweden, and
Finland. North Sámi belongs to the Uralic language family. For
spoken-language technology, it is an under-resourced, but ac-
tively researched language, and for instance a spell-checker has
been created [2], as well as experiments in speech recognition
and speech synthesis, enabling interactive technology [3].

Recently in speech recognition, large Self-Supervised
Learning (SSL) pretrained Transformer models have achieved

incredible performance with very limited resources, with learn-
ing criteria such as wav2vec 2.0 [4], HuBERT [5], and
wavLM [6]. As little as ten minutes of transcribed speech has
been enough to provide single digit WER on Librispeech (a
relatively easy English read speech task). The SSL pretrained
Transformer-models have also yielded very promising results
for under-resourced languages through multi- and cross-lingual
approaches [7].

3. Data
We have access to two corpora: Giellagas North [8] and the
UIT-SME TTS Corpus. Giellagas North has been gathered
through interviews, which have been transcribed. The intervie-
wees use three distinct dialects: Torne Sámi, Finnmark Sámi
and Sea Sámi, and the interviewers’ Sámi speech is also in-
cluded in the corpus. The interviewers may speak North Sámi as
a second-language, and some interviewers use Finnish, which
we filter out. Giellagas North contributes 19 speakers, totalling
just two hours of material. The UIT-SME TTS Corpus has about
eight hours of clean, prepared speech from two speakers.

We split Giellagas North by the annotated utterance seg-
ment boundaries. Since the UIT-SME TTS Corpus is distributed
as long recordings, we use a preliminary hidden Markov model /
Gaussian Mixture Model (HMM/GMM) system to segment the
corpus into short utterances, divided at sentence-ending punc-
tuation. We remove punctuation and capitalization from both
corpora.

In our earlier work, we used the speech transcripts for lan-
guage models. This decision allowed direct comparisons be-
tween End-to-End AED-models (which only use speech and
transcripts) and HMM/DNN-systems. Here, we are able to
leverage an additional North Sámi text resource. This resource,
called Freecorpus (FC), consists of freely available texts, col-
lected by Giellatekno and Divvun1.

In addition to the North Sámi data, we present results on
a simulated under-resourced scenario in Finnish. The Finnish
data is a subset of the Finnish Parliament ASR Corpus [9].

3.1. Data splits

We use data splits from our earlier work [1].
For North Sámi we take two splits: one speaker-

independent task, and one speaker-dependent task. In the
speaker-dependent task, the same speakers appear in the train-
ing, validation, and test sets, while in the speaker-independent
task, each data subset has different speakers (the validation
speakers are also distinct from the test speakers). Both tasks

1https://giellalt.github.io/ling/corpus_
repositories.html



use the UIT-SME TTS Corpus in the training data, and split
Giellagas North in across the training, validation, and test sub-
sets.

In Finnish, we use the Many-Speakers split, a speaker-
independent task. It has many speakers in the training data,
which helps in learning speaker-independence, although there
is only a small amount of data per speaker.

Table 1 lists the three tasks’ data details.

4. Speech recognition Systems
We base our systems on the HMM-system recipe developed
in [1]. This section presents the existing recipe.

The recipe provides an HMM/GMM, which is used for
forced time-alignment of the training data. The HMM/GMM
system follows the standard Kaldi-toolkit [10] steps: (1) a sim-
ple monophone model, (2), a triphone model, (3) a triphone
model with spliced input features and Maximum Likelihood
Linear Transform (MLLT), (4) a triphone model with spliced
input features, MLLT, and a feature-space Maximum Likeli-
hood Linear Regression adaptation. The alignments from the
HMM/GMM are used both as Cross-Entropy label targets as
well as in the acoustic model state-tying algorithm. This was
found to be helpful, despite the HMM/GMM completely failing
on the test data (99% error rate). An initial HMM/GMM (not
part of the final recipe) is also used to segment the UIT-SME
TTS Corpus by punctuation, because the UIT-SME Corpus is
distributed as long recordings.

As the final step of the recipe, a wav2vec 2.0 -based acous-
tic model is finetuned for the North Sámi data. Pretrained mod-
els with the Large architecture (approximately 300 million pa-
rameters) are used. Specifically, the Uralic V2 model2 is used.
Two fully-connected layers, with ReLU activations, Dropout,
and BatchNorm, are added on top of the wav2vec 2.0, and the
model has two output heads. The outputs are trained in a multi-
task setting: one with Cross-Entropy, the other with the Lattice-
Free Maximum Mutual Information (LF-MMI) criterion. The
two output heads are also used at decode time, linearly combin-
ing the log-likelihoods (after log-Softmax) from each output.
The acoustic models are implemented using a mix of Speech-
Brain [11] and Kaldi. The acoustic models use grapheme-based
lexica, which means that any difference in pronunciation across
the three North Sámi dialects has to be learned by the model
implicitly.

The language models use 400 subword units (Sentence-
Piece Byte Pair Encoding[12]). They are long-span (10-
gram) modified Kneser-Ney backoff models trained on the tran-
scripts of the acoustic model training data using the variKN-
toolkit[13].

We refer the reader to the original work for implementation
details and hyperparameters.

5. Experiments and results
The recipe from original work, as described in Section 4, serves
as the baseline. We set up a series of cumulative changes to
the baseline, and test those resulting systems on the speaker-
independent and speaker-dependent tasks. Our implementa-
tions are available online3.

2https://huggingface.co/facebook/
wav2vec2-large-uralic-voxpopuli-v2

3https://github.com/aalto-speech/
kaldi-sb-north-sme

The North Sámi data splits leave very little data into the
validation and test sets, which may impact the statistical evi-
dence that experiments provide. To quantify this issue, we use
a bootstrapped confidence-estimate [14]. This procedure gives
an estimate of the probability that one system improves over an-
other. We will call an estimated probability larger than 95% a
significant improvement.

5.1. System A

In System A, we use an output normalization loss on the LF-
MMI output head. This discourages the model to use extreme
output values, which might result from overfitting to the training
data. Additionally, we normalize the Cross-Entropy output by
an empirical prior. This was found to yield consistently better
results [15].

5.2. System B

In System B, we add SpecAugment [16] to System A. SpecAug-
ment is a simple, but very effective data augmentation method,
which should allow the model to avoid overfitting on the train-
ing data and help to learn noise-robust representations.

5.3. System C

In System C, we add label smoothing (smoothing value 0.1) to
System B’s cross-entropy loss. Label smoothing punishes over-
confident predictions.

5.4. System XLSR

In System XLSR, we change System C to a different wav2vec
2.0 pretrained model. Instead of the Uralic V2 model, we use
the XLS-R model4, which has been pretrained on over 400 thou-
sand hours of speech in 128 languages. The model is the same
size as the Uralic V2 one.

5.5. System XLSR + FC-LM

Finally, in System XLSR + FC-LM, we add the North Sámi
Freecorpus and train a new language model. This is only ap-
plied to the North Sámi data, naturally.

5.6. Some abandoned ideas

We report some ideas we tried, but which did not appear fruit-
ful in preliminary experiments. We tried using just the first
15 Transformer layers of the wav2vec 2.0 Large architecture
(sometimes reported to be helpful), but this yielded approxi-
mately similar performance. We tried decreasing the number
of acoustic states, with the idea that less unit granularity would
decrease chances of overfitting. This did not improve results.
We tried training the output layers for some thousands of up-
dates before switching to training the whole network, with the
idea that randomly initialized output layers may lead to large
gradients in the wav2vec 2.0 layers, which in turn might lead
to catastrophic forgetting. However, our models do not seem
to suffer from catastrophic forgetting, and this idea also did not
yield improvements. Finally, we tried decreasing the size of
the language model vocabulary, to lessen language model data
sparsity, but this only yielded worse results.

4https://huggingface.co/facebook/
wav2vec2-xls-r-300m



Table 1: The data splits used in this work.

Number of Speakers Speaker overlap Number of Utterances Size [hours]
All North Sámi Speaker Independent

Train 7 5545 8.01
Validation 4 287 0.16

Test 10 1869 1.51
All North Sámi Speaker Dependent

Train 21

✓
6960 9.14

Validation 11 110 0.08
Test 11 631 0.48

Finnish Parliament Many-Speakers
Train 340 6668 20.09

Validation 10 954 2.76
Test 10 962 2.81

5.7. Results

Table 2 lists the results on the various data splits in this study.
A bootstrap estimate confirms that the improvements on All
North Sámi Speaker Dependent are significant for all systems
(> 99.99%). On All North Sámi Speaker Dependent, the im-
provements are significant for Systems C (> 96.5%), System
XLSR (> 99.8%), and System XLSR + FC-LM (> 99.99%),
but for systems A and B, no statistically significant difference
with the Baseline could be found.

Table 2: Main results

WER/CER [%]
Validation Test

All North Sámi Speaker Independent
Baseline 79.20 / 56.76 72.66 / 46.53
System A 78.54 / 49.84 71.36 / 40.00
System B 80.22 / 52.36 71.15 / 41.50
System C 77.80 / 51.40 70.52 / 41.93

System XLSR 77.52 / 49.37 69.09 / 38.93
System XLSR + FC-LM 76.21 / 48.90 66.43 / 38.63
All North Sámi Speaker Dependent

Baseline 45.85 / 25.21 51.78 / 29.65
System A 47.80 / 22.27 52.02 / 25.99
System B 50.73 / 22.18 51.95 / 24.25
System C 47.48 / 22.08 50.85 / 24.71

System XLSR 45.69 / 21.82 50.51 / 24.76
System XLSR + FC-LM 46.18 / 20.91 47.85 / 22.54
Finnish Parliament Many-Speakers

Baseline 13.93 / 4.93 10.13 / 3.34
System A 13.43 / 4.56 10.02 / 3.14
System B 13.29 / 4.45 9.65 / 3.05
System C 13.14 / 4.47 9.66 / 3.04

System XLSR 18.48 / 5.25 15.09 / 3.72

6. Discussion
On North Sámi, we see marginal improvements from the hy-
perparameter choices. Additional, but minor improvements are
yielded by using the Freecorpus language model. It appears that
for truly substantial improvements in our systems, more tran-
scribed speech is needed. Mirroring our earlier results, we see
that the Speaker Independent task remains much more difficult
than the speaker dependent one.

On the Finnish data, we mostly see similar performance im-

provements from the new systems, as with North Sámi. How-
ever, the XLS-R wav2vec 2.0 pretrained weights result in a ma-
jor degradation in performance in Finnish, whereas on North
Sámi it yields the best results. This may be a result of the do-
main of Uralic speech in the Uralic V2 pretraining data. The
Uralic pretraining data comes from the European Parliament
sessions, which are probably similar in style as the Finnish Par-
liament data. On the other hand, this result may also indicate
that for a language that is not directly included in the pretrain-
ing data, a larger amount of languages and data is better than
keeping to a particular language family.

It would be possible to increase the amount of data and
speaker variety in the training data while maintaining a mean-
ingful test set through the use of leave-one-out cross-validation.
However, that comes at the cost of orders-of-magnitude more
computation. For hyperparameter studies, it may be more fruit-
ful to use traditional, constant data splits.

Since North Sámi suffers from lack of official benchmarks,
we had to use very small test sets. However, through the use
of a bootstrap significance estimate, we were able to verify that
our results are statistically significant.

7. Conclusions

We proposed some improvements to our wav2vec 2.0 -based
speech recognition systems for North Sámi. In experiments, we
validated that the system changes yield minor improvements
on North Sámi tasks, as well as a simulated under-resourced
Finnish task. We experimented with an additional text-only cor-
pus of North Sámi, which also yielded minor improvements.

Experiments have shown that large self-supervised pre-
trained models can reach impressive results even with very lim-
ited data. Nevertheless, we concluded that only minor improve-
ments are available through training improvements and more
language model data. Something is needed: more data, or bet-
ter in-built structure. Leveraging the linguistic understanding
of a language is a common way to make up for lack of data
in under-resourced scenarios. However, we believe acquiring
more transcribed speech is also necessary, because it would al-
low the curation of standard size (e.g. five hours) development-
and test sets on which results would hold more statistical signif-
icance. As evidenced by the Giellagas corpus, care needs to be
taken to cover different dialects and speakers of North Sámi.
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