
What kind of multi- or cross-lingual pre-training is the most effective for a
spontaneous, less-resourced ASR task?
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Abstract
Most languages are under-resourced for Automatic Speech
Recognition (ASR), and most relevant tasks are related to the
transcription of spontaneous speech. The application of cross-
or multi-lingual pre-training is inevitable, however, the selec-
tion of the best pre-trained model or data/method is not straight-
forward. In this paper, we introduce a case study for Hungarian,
targeting good quality spontaneous speech while monitoring
the ASR performance of read speech. Transformer/conformer-
based end-to-end neural models with supervised cross-lingual,
self-supervised cross- and (massively) multi-lingual and weakly
supervised multi-lingual pre-training are fine-tuned and evalu-
ated. Surprisingly, a relatively small-scale tri-lingual (SSL pre-
trained) model won the competition by a large margin over very
large-scale models trained on more Hungarian data. The results
revealed that the composition of pre-training data in terms of
language and speech style was essential, bigger size or higher
number of languages did not necessarily come with improve-
ment, and no transcription was required in the pre-training for
the best performance.
Index Terms: automatic speech recognition, less-resourced
languages, pre-training, spontaneous speech, SSL, weak-
supervision, conformer, wav2vec2.0, Hungarian.

1. Introduction
Recently ASR (Automatic Speech Recognition) of smaller,
under-resourced languages has gained more support by the
introduction of (massively) multi-lingual speech recognition
models, such as Whisper [1], USM [2] and MMS [3]. These
large-scale developing models are evaluated on multi-lingual
benchmarks, e.g., on FLEURS [4]. Improvements in overall
performance, however, tell us little about ASR accuracy for a
given task in a given (less-resourced) language and speech style.
For a specific task – in our case, spontaneous Hungarian speech
recognition –, the best practice is still to use large-scale pre-
trained models and fine-tune them with in-domain data. To the
question in the title – what kind of multi- or cross-lingual pre-
training is the most effective for a spontaneous, less-resourced
ASR task – we could not find an up-to-date answer, so we con-
ducted several experiments including (but not limited to) the
latest publicly available pre-trained models.

We investigated recent neural architectures and training
schemes, such as Conformer [5] using only supervised train-
ing from scratch and also with cross-language supervised pre-
training + fine-tuning [6] on the BEA-Base [7] Hungarian train-
ing set. In large-scale weak supervision based experiments
(Whisper) [1] we report zero-shot and fine-tuned results. Fi-
nally, classic and most recent self-supervised wav2vec2.0 based
pre-training setups [8, 9, 10, 3] were also fine-tuned on the

BEA-Base training data and evaluated on spontaneous – and
contrastively on read/repeated – speech. Additionally, sup-
plementary evaluations are reported on the Hungarian Com-
monVoice (CV) v12.0 test set when available. We show that
even if training (fine-tuning) does involve a large proportion
of spontaneous speech, ASR of this speech style is still chal-
lenging if compared to read speech. Based on the Hungarian
BEA-Base [7] where spontaneous (including conversational)
and read/repeated speech is collected from each speaker under
the same conditions, and evaluation subsets are defined corre-
spondingly, a clear contrast between speech registers (sponta-
neous vs. non-spontaneous) in ASR was measured.

One of our key findings is that pre-training data with the
highest proportion of spontaneous-like speech (such us parlia-
mentary debates) in the target language led to the optimum per-
formance – even though other approaches used additional target
language data.

This work is a significant extension of our earlier study [7]
introducing the BEA-Base benchmark and various ASR base-
lines. In this paper, we apply more recent approaches that
clearly outperform all previous results, and we provide new in-
sights into the improvements and pre-training model selection.

2. Data sets and ASR task
2.1. Database statistics

For supervised end-to-end acoustic model training/fine-tuning,
we always used the “train-114” subset of BEA-Base v0.1 and
applied the “dev spont” as validation set (see details in Table 1).
For evaluations, we primarily used the spontaneous (mostly
conversational) “eval spont” speech subset. For more general
conclusions, the non-spontaneous (read+repeated) “eval repet”
and “dev repet” and CV Hungarian (v12.0) [11] test sets are re-
ported regarding WER (Word Error Rate) and CER (Character
Error Rate) as well, where both reference and hypothesis tran-
scriptions were normalized. (For further details on the exact
composition of the subsets, see [7].)

To train a language model (LM), the spoken language
(SPOK) sub-corpus of the Hungarian Gigaword Corpus (HGC)
[7] was used. Refer to Table 1 for the statistics of the corpora
applied and for SPOK-trained word 3-gram based perplexity re-
sults obtained by using the KenLM [12] tool.

2.2. Speech data visualisation

To check the composition of training/evaluation speech data,
similarity analysis is carried out based on the quantized latent
representations of a pre-trained wav2vec2.0 model. We follow
the recipe of [8], but we calculate the codebook frequency vec-
tors on a per speaker basis instead of per language (Figure 1,



Table 1: Main characteristics of data sets used in the experiments.

HGC BEA-Base CV
SPOK train-114 dev-repet dev-spont eval-repet eval-spont test

Length [hours] - 71.2 0.65 4.02 0.95 4.91 6.8
Num of speakers - 114 10 10 16 16 220
Num of segments - 76 881 568 4 893 858 5 693 4 871
Num of characters 516.84M 3.1M 28 467 154 994 43 448 197 738 250 709
Num of words 56.13M 0.56M 4 110 27 939 6 229 35 178 35 485
3-gram PPL - - 924 771 846 857 2 387
OOV rate [%] - - 1.6 1.9 1.4 1.7 3.1

left). A simple mean is calculated within each speech style clus-
ter to get the centroids as can be seen in Figure 1 (right). For
the visualization experiments, we used the Uralic wav2vec2.0-
large model1. More details on the speaker-wise similarity-based
visualization can be found in [13]. As Figure 1 shows, there is
a significant overlap between various speech styles, but spon-
taneous (Discourse, Interview, Summarization, and Opinion)
module centroids are clearly separated from non-spontaneous
ones (Readsent, Readtext and Repeat) confirming the appropri-
ateness of BEA-Base subset definitions. For more information
on BEA modules and subsets, see [7].

Figure 1: Quantized latent representation based data visualisa-
tion on a per speaker (left) and per speech type (right) basis.

3. Supervised learning based results
In the following, we introduce the experimental results obtained
with various Conformer [5] approaches. In all configurations
the NVIDIA NeMo toolkit v1.6.2 was applied with the default
hyper-parameter settings – unless mentioned otherwise. We
used CTC loss [14] and a simple convolutional decoder. For
data augmentation, SpecAugment [15] and speed perturbation
was applied. In all experiments we used a batch size of 32,
a total epoch number of 200, and a beam size of 150 for LM
rescoring. For character based setups, the same word 3-gram
language model trained on HGC-SPOK was used as in Table 1.
(Note that our LM is different from the one used in the baseline
[7], trained on more data but on a text independent of BEA-
Base.) A SentencePiece tokenizer [16] was trained on the train-
114 transcriptions with 128 unigram units and was applied on
the HGC-SPOK before training subword 6-gram LM. Two RTX
A6000 GPUs served as hardware accelerators.

1https://github.com/facebookresearch/voxpopuli

3.1. Training from scratch

First, we wanted to set up Conformer baselines and check if they
can outperform the previous convolutional QuartzNet [17] base-
lines published in [7]. For this, we trained Conformer models
with subword output labels for both the small and medium sizes
with a learning rate of 1. As can be seen in Table 2, greedy (no
LM) results are clearly better than the convolutional baseline,
and adding a 6-gram subword language model improved the ac-
curacies further (unlike in the case of the QuartzNet model).

3.2. Pre-training & cross-language transfer learning

Second, we applied models pre-trained with English data by
NVIDIA and fine-tuned them on the Hungarian train-114 set.
All the pre-trainin details and models can be accessed through
the NVIDIA Catalog2 using model name formats such as
stt en conformer ctc large. The results are shown in Table 3.
In spite of the significant difference between the acoustics of
English and Hungarian, the positive effects of cross-language
transfer learning can be clearly observed.

4. Large-scale weak supervision based
results

Once the multi-lingual Whisper [1] ASR models became avail-
able, it was an obvious task to test and fine-tune them on the
BEA-Base data set. Since Whisper training covers Hungar-
ian, beyond fine-tuning, zero-shot experiments were carried out.
For the ASR experiments we used the SpeechBrain toolkit [18]
and the same fine-tuning setup (e.g., same augmentation) as de-
scribed in the previous section. According to SpeechBrain’s CV
recipe for Whisper fine-tuning, the encoder part of the models
was frozen in our experiments. We applied 20 epochs on the
BEA-Base training set with a batch size of 12, an initial learn-
ing rate of 0.00003 and a max decode ratio of 0.1 – all other
hyper-parameters were unchanged. No LM was used since the
end-to-end model itself applied a heavy decoder. Only medium
and large models were used because we wanted to achieve the
highest accuracies possible.

As shown in Table 4, the results are somewhat disappoint-
ing. On BEA-Base, even the largest (v2) model with fine-tuning
could not outperform the previous Conformer model trained
by simple cross-lingual transfer learning and having less than
one tenth of parameters. In terms of CV test results, Whisper
showed better accuracies which can be attributed to its noise
robust (pre-)training.

2https://catalog.ngc.nvidia.com/



Table 2: CER(%) / WER(%) results with supervised training from scratch.

Model / Num of parameters LM BEA-Base CV
dev-repet dev-spont eval-repet eval-spont test

QuartzNet15x3 [7] / 12.7M - 2.20 / 9.73 8.33 / 25.20 2.91 / 11.56 8.84 / 26.70 -
3-gram 1.86 / 6.50 10.0 / 25.50 2.36 / 6.86 10.76 / 26.83 -

Conformer-Small / 13M - 2.13 / 10.71 7.77 / 23.90 2.87 / 12.73 8.21 / 25.31 14.47 / 49.83
6-gram 1.53 / 7.27 7.14 / 21.44 2.01 / 7.98 7.62 / 22.78 13.03 / 42.70

Conformer-Medium / 30.5M - 2.10 / 9.93 7.77 / 23.25 2.61 / 10.98 8.14 / 24.93 14.72 / 49.80
6-gram 1.26 / 5.67 7.00 / 19.74 1.53 / 5.65 7.30 / 21.01 13.32 / 42.98

Table 3: CER(%) / WER(%) results based on cross-lingual (English to Hungarian) pre-training + fine-tuning.

Model / Num of parameters LM BEA-Base CV
dev-repet dev-spont eval-repet eval-spont test

QuartzNet15x5 [7] / 18.9M - 1.96 / 8.93 7.55 / 23.55 2.58 / 10.63 7.96 / 24.87 -
3-gram 1.66 / 5.99 9.52 / 24.29 1.92 / 5.83 9.62 / 25.23 -

Conformer-Small / 13M - 1.92 / 9.64 6.14 / 20.02 2.51 / 11.22 6.48 / 21.39 10.34 / 40.78
6-gram 1.21 / 5.43 5.53 / 17.00 1.31 / 4.96 5.82 / 17.77 9.23 / 34.77

Conformer-Medium / 30.5M - 1.73 / 8.56 5.58 / 18.45 1.88 / 8.17 5.83 / 19.60 8.36 / 35.55
6-gram 1.09 / 4.53 5.06 / 15.94 1.15 / 4.40 5.27 / 16.52 7.46 / 30.42

Conformer-Large / 121M - 1.14 / 5.48 5.09 / 16.44 1.26 / 5.20 5.29 / 17.24 8.77 / 34.79
6-gram 0.97 / 4.45 5.08 / 15.64 0.98 / 3.66 5.24 / 16.25 8.02 / 30.82

Table 4: CER(%) / WER(%) results based on large-scale weak supervision.

Model / Num of parameters BEA-Base CV
dev-repet dev-spont eval-repet eval-spont test

Whisper-medium zero-shot / 769M 4.82 / 21.92 17.97 / 37.18 5.18 / 22.33 19.46 / 38.67 6.91 / 27.61
Whisper-large-v2 zero-shot / 1550M 3.74 / 17.54 17.06 / 33.17 3.99 / 18.04 17.06 / 32.76 5.27 / 20.41

Whisper-medium fine-tuned / 769M 1.31 / 5.38 7.96 / 18.83 1.50 / 4.90 9.33 / 20.60 7.83 / 27.93
Whisper-large-v2 fine-tuned / 1550M 1.01 / 4.45 7.10 / 16.96 1.23 / 4.37 8.46 / 18.69 6.19 / 23.69

5. Self-supervised pre-training based
results with wav2vec2.0

As could be observed, supervised pre-training even on distant
languages (English vs. Hungarian) improved the results signif-
icantly. Supervised (or weakly supervised) pre-training, how-
ever, will always have its limits due to the price, amount, qual-
ity and language of the available transcription data. Therefore,
the introduction of Self-Supervised Learning based pre-training
(SSL) at a large scale [19, 8, 9] made a real breakthrough in
ASR. Currently, one of the most popular approaches is the
Transformer based [20] wav2vec2.0 [19] framework. Several
thousands of pre-trained/fine-tuned models are available in pub-
lic model repositories (e.g., HuggingFace3). A major question
is, which one to apply and fine-tune for the given down-stream
task (ASR of spontaneous Hungarian). As [7] pointed out, using
an already fine-tuned model is not effective in our case, there-
fore in this study we restrict the question to the selection among
purely SSL-trained wav2vec2.0 large models with 300 million
parameters (other structures were not considered due to lack of
performance or computational resources).

3https://huggingface.co/

5.1. SSL pre-trained models

At first, we selected the model trained purely on English [19]
so that the results may be comparable to the previous cross-
lingual setup. Then we applied various multilingual models
[8, 9, 3]. Each of these models were also trained on Hungar-
ian speech data, including VoxPopuli (European parliamentary)
speech [10] in the latter two cases. Finally, the only wav2vec2-
large model left trained partially on Hungarian was the Uralic
model [10] where (untranscribed) training data encompassed
10.6k hours of Estonian, 14.2k hours of Finnish and 17.7k hours
of Hungarian speech.

5.2. Fine-tuning

We adopted an architecture described in SpeechBrain’s CV
recipe: a wav2vec2.0 encoder paired with an attentional GRU
decoder. Again, we used the SentencePiece tokenizer [16] on
the train-114 set with a unigram vocabulary size of 600. Data
augmentation, i.e., speed perturbation with 0.95, 1.0 and 1.05
factors and SpecAugment [15] was employed during the fine-
tuning phase. Joint CTC+Attention loss [21] with a CTC weight
of 0.4 was calculated in the first 20 epochs and only attentional
loss with label smoothing [22] in the remaining 80 epochs. The
effective batch size was 12. Separate optimizers were utilized
for the wav2vec2.0 encoder part, i.e., Adam [23] (alpha=1e-4,



Table 5: CER(%) / WER(%) results based on self-supervised pre-training + fine-tuning with wav2vec2.0 encoder + attentional decoder.

Model / Pre-train data [hours] Langs. LM BEA-Base CV
dev-repet dev-spont eval-repet eval-spont test

wav2vec2-large-lv60 [19] / 60k 1 - 3.19 / 8.61 5.45 / 18.01 2.59 / 8.46 5.94 / 19.17 11.21 / 36.48

wav2vec2-large-xlsr-53 [8] / 56k 53 - 1.12 / 5.09 5.17 / 16.24 2.09 / 5.81 5.53 / 16.62 10.49 / 34.18
wav2vec2-xls-r-300m [9] / 440k 128 - 1.15 / 5.28 4.70 / 14.95 2.39 / 6.16 5.11 / 15.61 8.57 / 30.53
wav2vec2-mms-300 [3] / 491k 1406 - 1.15 / 5.40 5.29 / 17.07 2.22 / 6.65 5.83 / 18.82 9.13 / 34.89

wav2vec2-uralic [10] / 42.5k 3 - 0.74 / 3.50 3.56 / 11.63 1.67 / 4.24 3.68 / 11.55 5.77 / 21.26
Neural 0.67 / 3.09 3.22 / 10.47 0.67 / 2.42 3.32 / 10.50 4.47 / 17.21

beta1=0.9 and beta2=0.999), and Adadelta [24] for all the addi-
tional layers (alpha=1.0, rho=0.95). We found a value of 0.15
for the Transformer dropout as optimal. In all other aspects we
kept the recipe unchanged.

5.3. Decoding with Transformer LM

This time, a GPT-based architecture [25] was applied. LM
pre-training was performed on the tokenized HGC-SPOK cor-
pus, followed by domain-specific fine-tuning on the BEA-Base
training set. The Transformer LM encompassed 14 stacked en-
coder blocks with 16 attention-heads per block. The dimen-
sion of the embedding layer was set to 1024 and the inner fully-
connected layer size was fixed at 3072 totaling in 149.3M train-
able parameters. The LM training lasted for 20 epochs with an
effective batch size of 512. For the fine-tuning phase, the first 4
layers were frozen.

To integrate the LM to the wav2vec2.0 acoustic model shal-
low fusion was performed [26]. The evaluation of the ensem-
ble model relied on beam search with a beam size of 8 tak-
ing the CTC loss into account with a factor of 0.014. The
output probabilities of the Transformer LM were added with
a weight of 0.285. The most probable beams were normalized
by their lengths [27] to deter the system from preferring shorter
sequences. Both the acoustic and the language model’s out-
put were sampled with a temperature of 1.05. Setting the end-
of-sentence threshold [28] to 2.5 and coverage penalty [29] to
3.0 seemed to produce the best validation results in our exper-
iments. In the LM-free experiments the beam width of beam
search was set to 80. NVIDIA A6000 and RTX 3090 GPU’s
were used both for acoustic and LM fine-tuning and tests. For
the results, see Table 5.

5.4. SSL-based Results & Discussion

Regarding monolingual (English) pre-training + fine-tuning to
Hungarian, it can be confirmed that self-supervised pre-training
is not necessarily superior to supervised or weakly supervised
pre-training – as spontaneous WER results are worse than in
the best of previous cases (Conformer-large/Whisper-large-v2
fine-tuned).

The effect of multi-lingual pre-training looked convincing:
both the xlsr-53 (53 languages) and xls-r (128 languages) setup
provided comparable or better results (withouth LM) then the
Conformer-large supervised cross-lingual approach. The mas-
sively multi-lingual model (MMS), however, performed slightly
worse than the other SSL multilingual models. This was unex-
pected because it used all the training data of the xls-r model
(including Hungarian). Surprisingly, the relatively small-scale
Uralic model drastically outperformed all other approaches
even without a language model. Adding a Transformer LM re-

duced the error rates further – almost halving the error rates
of the lv60 (cross-lingual SSL) approach. Interestingly, the
Uralic pre-training (+ fine-tuning on BEA-Base) provided al-
most the best results on the CV test set although no CV data of
any language was involved in either pre-training or fine-tuning.
The most straightforward explanation of the results may be that
not the absolute quantity of all/target language speech matters
but the relative quantity (the higher the better) and quality (the
more spontaneous the better) of the target language. Possibly,
adding related or structurally similar languages to the SSL pre-
training enhances the results substantially. The best, wav2vec2-
uralic-based fine-tuned model along with the Transformer LM
was made available for the Research Community (after registra-
tion)4.

6. Conclusions

Despite the recent advances in large-scale multi-lingual ASR,
the recognition of spontaneous speech in a less-resourced lan-
guage still remains challenging. BEA-Base provided a unique
opportunity to compare ASR results on spontaneous and non-
spontaneous subsets directly since they had been recorded from
the same speakers in identical conditions. We investigated pow-
erful state-of-the-art cross- and multi-lingual pre-training ap-
proaches to decrease primarily the spontaneous Hungarian er-
ror rates. Large-scale weakly supervised and massively multi-
lingual self-supervised pre-trained models were outperformed
significantly by a relatively small-scale tri-lingual model. We
think that the superior results are due to the highest density
of target language and speech style (Hungarian spontaneous
speech) in the pre-training data set. The results suggest that in-
creasing data sizes and number of languages in multilingual pre-
trained models may not necessarily result in lower error rates
for specific under-resourced tasks, and so the development of
mono- or oligo-lingual pre-trained models seems unavoidable.
Adding more spontaneous speech to SSL data sets in general
(without the need for transcription), however, has the poten-
tial to improve ASR results in real-life applications in a cost-
effective way.
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