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Abstract
Speech-to-text translation (S2TT) has made it critically im-
portant to overcome language barriers. Several multilingual
datasets have been introduced recently to expand the coverage
of multilingual S2TT systems. However, most research works
only focus on increasing the number of languages covered. Un-
fortunately, many of those languages were covered with only
a few hours of training data resulting in a low translation per-
formance. This paper proposes utilizing a unified speech-text
representation learning framework to overcome the shortage of
parallel speech-text datasets in the S2TT system. Although the
approach can be utilized for any language pair, we focus on
the Japanese-English S2TT task and evaluate it on the publicly
available CoVoST 2 dataset. In addition, we also evaluate the
S2TT system on our new Japanese-English dataset with sen-
tence ambiguities in which the same spoken utterances can have
different translation meanings depending on different prosodic
features. We achieve competitive results compared with other
state-of-the-art models in CoVoST 2 dataset and provide sig-
nificant improvement in the more challenging case of our new
dataset.
Index Terms: Speech-to-text translation, unified speech-
text representation learning, Japanse-English languages, low-
resource settings

1. Introduction
Speech translation is an innovative AI technology that offers
a solution to break language barriers by mimicking profes-
sional interpreters and automatically performing the translation.
Speech-to-text translation (S2TT) system is a particular system
that translates from source language speech to target language
text. Conventionally, the S2TT system consists of automatic
speech recognition (ASR) and machine translation (MT) in a
cascade manner [1, 2]. Modern S2TT systems perform the di-
rect speech-to-text translation in a single model based on deep
learning [3, 4, 5]. Many research groups and companies are pro-
gressing, and many speech translation services are now avail-
able for several languages but still support fewer than 100 lan-
guages. Nearly 7000 living languages that 350 million people
speak remain uncovered. Therefore, such technology must be
developed, especially for under-resourced languages (UL).

Recently, several projects committed to accelerating the
development of technology for UL by leveraging multilingual
systems capable of handling multiple languages. As a result,
several multilingual datasets have been introduced to expand
the coverage of multilingual S2TT systems. MuST-C [6] pro-
vides a one-to-many translation dataset that contains 400 hours
of speech per language for English to 8 languages. But it
only covered major European languages. Europarl-ST [7] is

a many-to-many translation dataset that is constructed from the
debates held in the European Parliament but also only covered
6 European languages with 30 different translation directions.
Facebook and Instagram introduced No Language Left Behind
(NLLB) [8] for the translation of low-resource languages cov-
ering 200 languages but with text data only of about 3000 sen-
tences in each language. Recently, the CoVoST [9] and CoV-
oST 2 [10] corpora, which are derived from Common Voice
[11], support the speech translations from English into 15 lan-
guages and from 21 languages to English. However, many of
those languages and language pairs were covered with less than
5 hours training data (low resource settings) resulting in a low
translation performance. Unfortunately, not many studies have
addressed how to deal with this problem.

This paper introduces an end-to-end direct speech transla-
tion model to handle low-resource datasets, which only consist
of a few hours of speech in training datasets. Inspired by the
unified pre-trained spoken language model for both speech and
text named SpeechT5 [6], our proposed model learns a unified-
modal representation for speech and text in the source language.
Then, we leverage the shared representation and parallel text
translation dataset to build a bridge between source speech and
target text. This method helps overcome the scarcity of our
S2TT datasets between different languages. Although the ap-
proach can be utilized for any language pair, we focus on the
Japanese-English (Ja-En) S2TT task and evaluate it on the CoV-
oST 2 [4] with only about 3 hours of speech data.

In addition, we also introduce a new dataset for Ja-En S2TT
in a low-resource setting. Our dataset provides samples that
illustrate how ambiguity in Japanese can affect the quality of
translation. It consists of sentence ambiguities in which the
same spoken utterances can have different translation meanings
depending on different prosodic features. For example, Figure
1 shows how pause could vary the meaning of the sentence “白
い 屋根の大きい家” [romaji: “shiroi <pause> yaneno ooki
ie”]. The pause between “shiroi” (white) and “yaneno” (roof)
results in the translation “A white house with a big roof ” instead
of “A big house with a white roof ”. Since speech ambiguation is
common in reality, our dataset is essential to train and evaluate
speech translation systems for practical circumstances. To our
knowledge, this is the first dataset that pays attention to speech
ambiguity in Ja-En S2TT. Here, we also evaluate our proposed
system on this new dataset compared to the baseline S2TT sys-
tem.

2. Related works
Numerous works have been focused on improving the perfor-
mance of low-resource S2TT recently. The direct speech-to-
text translation using encoder-decoder model with word-level
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Figure 1: An example of speech ambiguity.

decoding is applied in [13]. Multi-source model is fetched with
speech and text together to perform low-resource S2TT task in
[14]. Other works concentrate on utilizing pre-trained models
of related or unrelated languages on ASR task to facilitate low-
resource S2TT [15, 16]. To effectively fine-tune acoustic mod-
eling and multilingual text generation model on low-resource
S2TT task, only parameters of LayerNorm and Attention mod-
ules (LNA) are fine-tuned in [17]. mSLAM [18] focuses on
building a multilingual pre-trained model of speech and text,
which is trained on 429K hours of unannotated speech data in
51 languages, 15TBs of unannotated text data in 101 languages
and especially 2.3k hours of speech-text ASR data with CTC
loss to represent both speech and text in a shared representa-
tion space. However, for the specific task like S2TT, the direc-
tion of source speech to target text is not established well since
mSLAM [18] uses the CTC loss only on the ASR task of each
language. Additionally, using the encoder-only structure is not
ideal for sequence-to-sequence tasks. Our work, which is based
on cross-modality SpeechT5 [12] with encoder-decoder struc-
ture, enables the model to learn the translations from source
speech to target text during the task of text translation before
fine-tuning on downstream S2TT task.

3. Proposed method
Obtaining the shared speech-text representations for target side
from SpeechT5 [12], our framework then constructs the bridge
between source speech and target text through performing text
translation task. At last, we fine-tune the model on low-resource
S2TT dataset. We cover the overall structure of SpeechT5 [12]
in Subsection 3.1 and provide details about our framework in
Subsection 3.2.

3.1. SpeechT5

SpeechT5 [12] is a unified model framework that aims to learn
contextual representation for both speech and text via a shared
encoder-decoder structure. It follows Transformer framework
together with six modal-specific pre/post-nets: Speech-encoder
Pre-net, Text-encoder Pre-net, Speech-decoder Post-net, Text-
decoder Post-net, Speech-decoder Pre-net, Text-decoder Pre-
net. The Pre-net modules take raw audio Xs = (xt

1, ..., x
t
Ms) ∈

Ds or text Xt = (xt
1, ..., x

t
Mt) ∈ Dt as input and output

the specific vector representations based on modality. The
vector representations are fetched through the shared encoder-
decoder module as sequence-to-sequence conversion. The post-
net modules take responsibility to generate the sequence text or

log Mel-filterbank features based on modality.
SpeechT5 adopts the multi-task learning method with three

main tasks: text pre-training, speech pre-training, and joint pre-
training. The text pre-training task follows BART [19] which
trains on text denoising. The corrupted text X̃t = (x̃t

1, ..., x̃
t
M ),

which are created by using text infilling method as the same
as BART [19], are fed into the model to reconstruct the origi-
nal text Xt. The model is optimized with maximum likelihood
estimation as:

Lt
mle =

Nt∑
n=1

log p(xt
n|xt

<n, X̃t
). (1)

Speech pre-training performs on two subtasks: bidirectional
masked prediction and sequence-to-sequence generation. Fol-
lowing HuBERT [20], SpeechT5 masks the output H of Speech-
encoder Pre-net and inputs them into the encoder to generate
hidden representation U = (u1, ..., uNh). The frame-level tar-
gets Z = (z1, ..., zNh) is generated with the label from the 6-
th Transformer layer of the first iteration pre-trained HuBERT
base model. Cross Entropy loss of bidirectional masked predic-
tion subtask is formulated as:

Ls
mlm =

∑
n∈M

log p(zn|H̃, n), (2)

where zn is frame-level target at timestep n, H̃ is masked ver-
sion of H and M is set of masked timestep. The subtask
sequence-to-sequence requires the model to reassemble the log
Mel-filterbank Yf = (yf

1 , ..., y
f

Nf ) from the extracted log Mel-
filterbank Xf = (xf

1 , ..., x
f

Nf ) of raw audio Xs, given ran-
domly masked input following bidirectional masked prediction.
L1 distance is used as the loss function.

Ls
1 =

Nf∑
n=1

∥yf
n − xf

n∥1. (3)

In addition, Cross Entropy loss Ls
bce is utilized for training

model to predict stop token of the output Mel-filterbank. Joint
pre-training leverages paired speech and text for building cross
modality-mapping. In specific, the model aligns speech rep-
resentation and text representation through a shared codebook
via the vector quantization method. With a fixed-size codebook
Ck consisting of K learnable embeddings, continuous speech
or text representations ui from the output of the encoder are
converted into discrete representations ci by a quantizer. The
L2 distance is utilized as the metric for obtaining the nearest
discrete representations ci for ui.

ci = arg min
j∈[K]

∥ui − cj∥2, (4)

where cj is the j-th vector in the codebook. In addition, 10% of
the contextual text/speech representations is replaced by quan-
tized latent representations, which encourages the model to
learn from the quantized latent representations containing the
information of both speech and text. Diversity loss is used to
spread the attention of the model over different codes by maxi-
mizing the entropy of average Softmax distribution.

Ld =
1

K

K∑
k=1

pk log pk, (5)

where pk denotes the average probability of k-th code in the
codebook. The total loss function of the model is the sum of the
aforementioned losses:

L = Ls
mlm + Ls

1 + Ls
bce + Ls

bce + Lt
mle + γLd, (6)

where γ = 0.1 is the coefficient of Ld.
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Figure 2: Our framework based on SpeechT5 [12] contains different modules. In each training step, specific modules are used
depending on the training task. Unused modules are denoted by white color and the frozen module is denoted by cross line.

Table 1: Examples of our new dataset.

Japanese sentence Hint English translation
食後 に 大人 は 2 錠、<pause>子ども は 1 錠です
shokugo ni otona wa ni joo komodo wa ichi joodesu

食後 に 大人
shokugo ni otona Two tablets for adults after meals, and

one tablet for children.
食後 に <pause>大人 は 2 錠、<pause>子ども は 1 錠です
shokugo ni otona wa ni joo komodo wa ichi joodesu

食後 に 2 錠
shokugo ni ni joo After meals, two tablets for adults and

one tablet for children.
ダブル の バスつき の 部屋 が いいです
daburu no basutsuki no heya ga iidesu

ダブル の バス
daburu no basu I want a room with double bathrooms.

ダブル の <pause>バスつき の 部屋 が いいです
daburu no basutsuki no heya ga iidesu

ダブル の 部屋
daburu no heya I want a double bedroom with a bath-

room.

3.2. Our framework

Our framework (shown in Figure 2) consists of three main steps:
• Step 1: pre-train the SpeechT5 model on the monolingual

paired dataset of Japanese speech and text.
• Step 2: freeze the encoder while fine-tune the pre-trained

Japanese SpeechT5 on high resource Ja-En text-to-text trans-
lation dataset.

• Step 3: fine-tune the model on Ja-En low-resource S2TT
dataset.

The first step follows the idea of speechT5 [12] which builds a
cross-modality for both Japanese speech and text. In addition,
we also obtain a model whose encoder can encode Japanese
speech information for the S2TT task. Then, we attain a de-
coder to decode English text from the contextual information
of Japanese text in the second step. Since we obtained cross-
modality representations for speech and text from the shared
encoder in the first step, freezing the encoder helps the model
map from the shared representations to English text. In specific,
the translations with the direction from Japanese speech to En-
glish text are learned during the second step. At last, we fine-
tune the obtained model on the downstream S2TT task. Both
text translations and speech translations use Cross Entropy as
the loss function. Besides, the high resource of the monolin-
gual dataset of Japanese speech and the bilingual dataset of Ja-
En text-to-text translation are key components in our proposed
framework.

4. New dataset
The new dataset1 is manually collected and evaluated with the
help of professional translators who are fluent in Japanese and
English. Speech ambiguity is related to syntactic ambiguation
[21] which means the meaning of a sentence is determined by
the different syntactic structures. Prosodic features can be used
as cues for syntactic disambiguation [22]. Thus we first collect
all Japanese sentences with syntactic ambiguation in books or

1https://github.com/ha3ci-lab/data_stprodis_
jaen

Table 2: Statistics of our new dataset. #triplets and #hour de-
note the number of triplets and the number of audio hours, re-
spectively.

Split #triplets #hour
Training 308 0.8
Validation 67 0.13
Test 100 0.2

documents. Each sentence has 2-3 different meanings and we
also provide an explanation or hint for each meaning (shown
in Table 1). Then, we record the Japanese speech with four
different speakers 2 females and 2 males denoted as F01, F02,
M01, and M02. The speakers try to make each spoken utter-
ances convey the correct meaning with specific prosodic fea-
tures like pitch and pause. Audio files are formatted as 16kHz
WAV. At last, the translators translate our Japanese sentences
into English. Due to the shortage of human resources, our
dataset only supports the low-resource settings of S2TT (shown
in Table 2). Besides, with four different speakers, the dataset
can also support voice conversion or ASR in low-resource set-
tings.

5. Experimental results
5.1. Implementation details

Our models are implemented following SpeechT52 [12] and
Fairseq3 [23]. The encoder-decoder module has 6 encoder lay-
ers and 6 decoder layers, where the dimension is 768 and the
number of attention heads is 12. The settings of Speech-encoder
Pre-net, Text-encoder Pre-net, Speech-decoder Post-net, Text-
decoder Post-net, Speech-decoder Pre-net, Text-decoder Pre-
net, and codebook follows SpeechT5 [12]. We create a 32K uni-
versal BPE vocabulary for Japanese text and another 32K uni-
versal BPE vocabulary for English text. Our models are trained

2https://github.com/microsoft/SpeechT5/tree/
main/SpeechT5

3https://github.com/facebookresearch/fairseq



Table 3: BLEU score of baselines and our model on CoVoST 2 and proposed dataset.

Model CoVoST 2 Proposed dataset
End-to-End ST [10] 1.5 0.05
LNA [17] 2.1 N/A
mSLAM [18] 3.3 N/A
Cascade ST [10] 3.8 N/A
Our model 3.41 3.23

Table 4: Ablation study.

Model CoVoST 2 Proposed dataset
Naive SpeechT5 0.84 0.6
Naive SpeechT5 with step 1 3.0 2.79
Naive SpeechT5 with step 2 2.9 2.56
Our model 3.41 3.23

only on a single A100 GPU.
For pre-training SpeechT5 on Japanese, we combine 66.3

audio hours with transcripts for training from 9 hours of JSUT
corpus [24], 52.8 hours of Kokoro4, 1.3 hours of CoVoST 2
training data and 3.2 hours of proposed dataset training data
(audios of 4 speakers). The validation set contains 8.1 audio
hours which is also a combination of 1 hour of JUST corpus,
5.8 hours of Kokoro, 0.8 hours of CoVoST 2, and 0.5 hours of
our own data. Our settings follow the settings of pre-training
step in SpeechT5 except for 80000 updates and 6400 warming-
up updates.

In the text translation step, we utilize JESC [25] which con-
sists of 2.7 million sentences for the training set, 2000 sentences
for the dev set, and 2000 for the test set. We train our models
with 0.001 learning rate, 40000 number of updates, and 4000
number of warming up updates. The best model is chosen based
on SacreBLEU [26] with beam size 5 over the validation set.

To evaluate our models on Ja-En low-resource S2TT
dataset, we use our new dataset recorded by speaker F01 and
CoVoST 2 dataset which has 1.3 hours for the training set, 0.8
hours for the validation set, and 0.8 hours for the test set. We
use the same method as text translation to select the best model
for testing.

5.2. Results and discussion

We compare our models with multiple baselines. End-to-End
ST [10] is the direct speech-to-text translation model with
Transformer framework where the encoder is pre-trained with
ASR using English data in CoVoST 2. LNA [17] is also a di-
rect speech translation model which is initialized by Wav2vec
2.0 [27] for the encoder and mBART 50 [28] for the decoder.
mSLAM [18] adopts the Conformer framework with 2 billion
parameters and is pre-trained on a multilingual dataset of unla-
beled text and speech as well as paired speech-text. Although
we propose a direct speech translation model, we also compare
with Cascade ST [10] which is composed of a large Transformer
pre-trained ASR model and multilingual text translation trained
on all X-En and En-X.

In Table 3, the results show that our model outperforms
other direct speech-to-text translation models on CoVoST 2
with 3.41 BLEU score. This indicates the effectiveness of our
proposed method which indirectly trains the model on the direc-
tion of Japanese speech to English text. Besides, we also show
the effective way to utilize available resources in Japanese. Al-

4https://github.com/kaiidams/
Kokoro-Speech-Dataset

though our model cannot beat Cascade ST, it still narrows the
gap between the direct translation and the traditional cascade
solution. In addition, our model achieves a decent recent result
of 3.23 BLEU score on the proposed dataset despite the scarcity
of the dataset and the speech ambiguity.

To further investigate the effect of different steps in our
framework, we also conduct the ablation study. The results are
shown in Table 4. First, we directly train the naive SpeechT5
model on each speech translation dataset without pre-training
on the paired dataset of Japanese speech and text or fine-tuning
on the text translation dataset. This model shows poor results
since it suffers from the scarcity of training data without knowl-
edge from the preceding steps. Second, pre-training the model
for cross-modal representations before training the downstream
task shows improvement which comes from the pre-trained
Japanese speech encoder. Third, the second step also improves
the performance of naive SpeechT5 since it provides the knowl-
edge about target side. Fourth, our full model achieves the best
result since pre-training on the two preceding steps enables the
model to learn the translation from source speech to target text.

6. Conclusion
In this paper, we propose an efficient framework for low-
resource S2TT. We exploit SpeechT5 [12] to build a shared rep-
resentation for both Japanese speech and text. Then, we fine-
tune the model on high-resource Ja-En text translation, which
helps train Japanese speech to English text thanks to the pre-
trained cross-modality encoder. At last, we fine-tune the ob-
tained model from the preceding steps for low-resource S2TT.
We also compare the performance of our models with other
those of state-of-the-art methods on CoVoST 2 and the proposed
dataset. We outperform the end-to-end direct translation base-
lines and close the gap with the conventional cascade approach.
Besides, we also introduce a new low-resource S2TT dataset
that focuses on speech ambiguity with different prosodic fea-
tures and achieve decent results with our model.

In this study, we only investigated Japanese-English speech
translation, but the framework can generally be applied to other
low-resourced language pairs. In the future, we will apply this
method to other languages. In addition, we will explore extract-
ing and incorporating prosodic features, especially pitch and
pause to better distinguish speech ambiguity in S2TT.
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