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Abstract
Direct neural speech-to-speech translation (S2ST) systems en-
able translating speech from source to target languages with-
out the need for text transcription. However, these systems
are mostly trained using supervised learning that relies on a
massive amount of parallel source-target speech data, which
is often unavailable. This paper proposes a bilingual speech
alignment approach called VGSAlign, as the initial solution for
obtaining paired data from unknown, untranscribed, and un-
paired speech data. Here, we assume the speech has auxil-
iary input from the visual modality that describes the seman-
tic information. The approach then leverages the ability (1) to
discover spoken words in multiple languages from the corre-
spondences between speech segments and part of images based
on self-supervised visually grounded speech models and (2)
to find the visually grounded semantically equivalent between
the spoken discovery of speech segments of source and target
languages. By learning the representations of speech and im-
ages, VGSAlign shows the potential to achieve bilingual speech
alignment based on visual representation. Furthermore, exper-
imental results show that the proposed approach could work
effectively with unknown, untranscribed, and unpaired speech
without being trained on any supervised tasks.
Index Terms: bilingual speech alignment, self-supervised
speech representation, visually-grounded speech model

1. Introduction
Machine translation is a technology in the field of artificial in-
telligence with the purpose of facilitating communication be-
tween people who speak different languages. However, this
technology has been primarily focused on written languages
[1]. Even for developing speech-to-speech translation (S2ST),
the traditional approach uses a cascade manner that concate-
nates automatic speech recognition (ASR), machine transla-
tion (MT), and text-to-speech synthesis (TTS), in which writ-
ten form as an intermediate modality between these systems is
critical [2, 3]. Nevertheless, there are approximately 7,000+
spoken languages, half of which do not have a writing system.
Therefore, the trend in recent technologies focused more on de-
veloping a direct approach of S2ST based on end-to-end deep
learning, enabling people who speak any language to translate
their speech without the need for text transcription [4, 5, 6].
The success of this technology will allow individuals from all
over the world to communicate more fluidly with one another,
regardless of their native tongue.

However, despite the benefits of direct neural S2ST tech-
nology, it is essential to note that these systems are primar-
ily trained using supervised learning that relies on a massive
amount of parallel speech of both source and target languages.

Unfortunately, such datasets are often unavailable. Therefore,
much work must be done to ensure that it is accessible and ef-
fective for all languages and cultures. Several studies attempted
to construct unsupervised S2ST (US2ST) systems. To date,
Wang et al. [7] proposed to develop US2ST by cascading un-
supervised ASR (UASR) [8], unsupervised machine translation
(UMT) [9, 10], and unsupervised TTS (UTTS) [11, 12]. UASR
was trained to output pseudo labels given only speech data, and
UMT was trained to map source-target monolingual corpus into
shared latent representation via adversarial learning. In con-
trast, UTTS was trained to generate speech waveform given the
pseudo labels. However, similar to traditional cascade S2ST,
such an approach often suffers from severe error propagation.
A study by Fu et al. proposed denoising back-translation to ad-
dress error propagation problems [13].

In contrast with existing cascade US2ST, we aim at US2ST
based on the neural direct translation framework, and this pa-
per proposes a bilingual speech alignment approach called
VGSAlign, as the initial solution for obtaining paired source-
target speech datasets from unknown, untranscribed, and un-
paired monolingual speech data from two different languages.
Here, we assume the speech has auxiliary input from the vi-
sual modality that describes the semantic information. The ap-
proach then leverages the ability (1) to discover spoken words in
multiple languages from the correspondences between speech
segments and part of images based on self-supervised visually
grounded speech models and (2) to find the visually grounded
semantically equivalent between the spoken discovery of speech
segments of source and target languages. By learning the repre-
sentations of speech and images, VGSAlign shows the potential
to achieve bilingual speech alignment based on visual represen-
tation.

2. Related Works
Visual and spoken language representation. Associating the
semantic aspect of spoken language representation with images
has grown much attention in recent years. Most approaches
learn to align visual images and untranscribed spoken captions
by modeling image and speech representation in a joint em-
bedding space [15, 16, 17, 18]. On the other hand, research
on a self-supervised approach to speech has also become pop-
ular as it allows producing acoustic embeddings from the in-
put speech waveform without any supervision. Such an ap-
proach has been shown to be effective in producing high-quality
speech representations. Hsu et al. [19] presented the Hidden
Unit-BERT (HuBERT) model for self-supervised speech rep-
resentation, which performed well on various speech tasks. A
study by Peng et al. proposed a method for visually grounded
spoken term discovery by utilizing HuBERT to automatically



Figure 1: The overview of the proposed VGSAlign system with the input are speech-image pairs from source and target languages. Note
that the images are from the MS-COCO dataset [14].

discover (localize, segment, and identify) spoken words based
on visually grounded models [20]. Unfortunately, these studies
mainly focused only on monolingual settings. Several studies
then offered to provide multilingual visually-grounded speech
models. However, these approaches require equal samples to
learn the triple association of one image and two speech repre-
sentations from two different languages (Sp1, Im, Sp2) [21].
Ryu et al. investigated the impact when one language has more
data than the other to simulate whether richer language can sup-
port the under-resourced languages [22]. Nevertheless, the ap-
proaches assumed that the images in those languages are the
same. Nevertheless, in reality, such conditions are difficult to
obtain. In contrast, in our study, we deal with multiple visu-
ally grounded speech representations where the images of those
languages may be different (Sp1, Im1, Im2, Sp2). The idea
might be close to Suris et al.’s [23]. However, their approach
focused only on discrete transcription, while here, we deal with
continuous speech representation without any text information.

Bilingual alignment. The lack of large-scale paralleliz-
ing in pairs between source and target data forced many re-
searchers to construct technologies with purely non-parallel
data [24, 25]. Wang et al. [26] addressed the problem of non-
parallel source and target sentences using partially aligned sen-
tence pairs, which can be incorporated into the conventional
training phase of the model. However, this study is originally
developed only for text translation. In contrast, our work deals
with unknown, untranscribed, and unpaired speech utterances.
Furthermore, as the image representations of those bilingual
speech segments may be different, we first need to identify the
speech pairs (Sp1 and Sp2) by calculating the similarity be-
tween those two image representations (Im1 and Im2). After
that, we discover partially aligned bilingual speech segments on
the generated pseudo pair of speech utterances.

3. VGSAlign - Bilingual Speech Alignment
The proposed VGSAlign system aims to achieve the speech
pairs between source and target languages based on correspond-
ing visual context. The system combines two self-supervised
visually grounded speech models as encoders for image and au-
dio. The datasets for training these models consist of speech Sp
and their corresponding images Im. The system is depicted
in Figure 1, which shows how the proposed VGSAlign sys-
tem works to determine whether two speech utterances (Sp1
and Sp2) are partially semantically paired or not based on the
speech-speech similarity (as mentioned in Section 3.2)

3.1. Self-supervised Visually Grounded Speech Model

Our self-supervised VGS models follow the structure of the
research of Peng et al. [20]. The model has a dual-encoder
architecture, including (1) an audio encoder based on a self-
supervised speech model such as HuBERT [19] or Wav2Vec2.0
(W2V2) [3] and (2) an image encoder is a self-supervised vi-
sion transformer model as DINO-ViT [27]. Input to the model
consists of a raw speech waveform and its corresponding im-
age. After being fed respectively into the audio and image en-
coders, the output of the self-supervised VGS model is the sim-
ilarity score between them, indicating the speech reflects the
content of the image when it is large. In contrast, the oppo-
site is true for the small similarity score. The model is trained
using the InfoNCE loss [28, 29], which is effective for various
self-supervised learning tasks.

LN = −EX

[
log

fk (xt+k, ct)∑
xj∈X fk (xj , ct)

]
(1)

The InfoNCE loss attempt to optimize a given expression
by considering a collection X = {x1, . . . , xN} comprising N



random samples. This collection includes a single positive sam-
ple drawn from the distribution p (xt+k | ct), where ct repre-
sents a specific condition at time t+k. Additionally, X contains
N − 1 negative samples obtained from the ‘proposal‘ distribu-
tion p (xt+k). To this end, this loss aims to maximize the high
similarity scores to related speech-image pairs and otherwise.

3.2. Bilingual Speech Alignment

The main scenario in this work is that each speech has its corre-
sponding image, and both images of two speech have common
semantic parts, as shown in the example in Figure 2 below.

Speech context: A cat is sitting on a desk eating off a plate

Speech context: 仕事中のパソコンの前を猫が陣取る
(A cat is sitting in front of a desk computer)

Figure 2: The scenario in this work with two speech in different
languages describing two images. Note that the two images are
partially semantically paired.

First, we process the set of images and extract their features
by an image encoder. Then, we employ K-means clustering on
the extracted image features to group the images into clusters
based on their similarities. This clustering approach allows us

to gather images with similar characteristics together, thereby
reducing the computation space.

At each cluster, we compute the similarity between one im-
age Im1 to other images Im2 within the cluster. The image
with the most similarity Sim(Im1, Im2) is chosen as an ini-
tial pair. Note that although Im1 and Im2 are different, they
include some parts with similar semantic information. The re-
maining clusters also go through the same process.

For each image, we initialy have two corresponding speech,
Spsource and Sptarget, from two different languages. We only
keep the Spsource (or Sp1) of Im1, and Sptarget (or Sp2) of
Im2 for the initial image pair (Im1, Im2). Consequently, the
speech Sp1 of Im1 is temporarily seen as a paired speech of
the speech Sp2 of Im2.

After that, to determine whether those two speech are paired
or not, inspired by the work of Suris et al. [23] with the text-
text similarity based on visual representation, we consider the
speech-speech similarity defined as 2 below.

Sim(Sp1, Sp2) (2)
= Σ(Sim(Sp1, Im2), Sim(Sp2, Im1))

To decide a couple of speech, as defined above, is paired or
not, we compute the cross similarity (Sp1, Im2) between the
source speech and target image, and the same with (Sp2, Im1)
by conducting dot product the output of the VGS model en-
coders. Both image and speech are fed into respective encoders
of the self-supervised VGS models. Once the features have been
extracted, we use 2-layer MLPs to project them into a 2048-
dimensional space. Their final sum similarity between the cross
similarity is used to determine whether those two input speech
are partially paired or not by using an appropriate threshold.

4. Experiments
4.1. Data

We perform our experiments using the SpokenCOCO [30] and
SpokenSTAIR [31] for English and Japanese speech corpora,
respectively. SpokenCOCO is a dataset that contains approx-
imately 600K recordings of human speakers reading the MS-
COCO [14] image captions out loud in English. For Japanese
speech, SpokenSTAIR is generated by synthesizing captions
from the STAIR dataset [32] following the same methodol-
ogy as Chrupala et al. [16]. The SpokenSTAIR also consists
of around 600K synthesized audio, and there are five spoken
captions for each image as the structure of the SpokenCOCO
dataset. Note that the images in the SpokenSTAIR dataset are
also sourced from the MS-COCO dataset. The proportion of
data follows Karpathy split [33] with around 550K, 25K, and
25K audio files for training, validation, and test set, respectively,
for both SpokenCOCO and SpokenSTAIR.

4.2. System Setup

We train the self-supervised VGS models with the settings as
those of the work of Peng et al. [20]. The audio encoder we use
is HuBERT or W2V2, while we use the DINO-ViT as the image
encoder. Before calculating the dot product between the outputs
of audio and image encoders, we individually transform them
using 2-layer MLPs, projecting them into a 2048-dim space.
Furthermore, we increase the batch size to 128 and train the
self-supervised VGS models over 30 epochs. Models on Spo-
kenCOCO and SpokenSTAIR are trained on a single NVIDIA
A6000 GPU for approximately three days.



Table 1: The retrieval recall scores for the models on SpokenCOCO (English) and SpokenSTAIR (Japanese) test sets, respectively.

Model Image → Speech Speech → Image Average Speech ↔ Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

SpokenCOCO
VG-HuBERT [20] 42.8 73.6 83.9 30.6 60.8 72.8 36.7 67.2 78.4
EN-VG-W2V2 41.3 72.3 83.8 29.8 60.0 72.8 35.6 67.2 78.4
EN-VG-HuBERT 44.1 74.2 84.4 31.0 60.6 72.5 37.6 67.4 78.5

SpokenSTAIR JA-VG-HuBERT 40.3 72.3 83.2 29.7 60.0 72.3 35.0 66.2 77.8
JA-VG-W2V2 42.0 73.1 83.3 30.3 60.3 72.7 36.2 66.7 78.0

First, we construct a subsystem to choose the initial im-
age pairs for bilingual alignment. We conduct experiments with
1,000 images randomly taken from the test set of MS-COCO.
As a result, the number of obtained image-image, as well as
speech-speech pairs, is 500. Note that each image has two cor-
responding speech from SpokenCOCO and SpokenSTAIR, and
both describe the same image in English and Japanese. The
VGG-16 [34] is used as an image feature extractor. We then
classify images using K-means clustering with K equal to 10.
To calculate the similarity between an image and the remaining
images in each cluster, we use Cosine Similarity.

After obtaining the initial image pairs, for each pair
(Im1, Im2), we keep only the Japanese speech for Im1 and
only English speech for Im2. The English and Japanese speech
are fed into the respective encoders, and the same with their cor-
responding images. The extracted features of the two speech-
image pairs are then used for calculating the speech-speech sim-
ilarity (as mentioned in Equation 2). We scale the range of simi-
larity from [-1, 1] up to [0, 1] and set a threshold as 0.5 to decide
whether the two input speech are a pair.

4.3. Evaluation Metrics and Results

Speech-Image Retrieval Recall Score. As multimodal mod-
els, we first evaluate all self-supervised VGS models on their re-
trieval performance by retrieval recall (R@K) score. The R@K
with the K at 1, 5, and 10 are depicted in Table 1. With the
obtained results, we can see that on the average speech-image
retrieval recall score, our re-trained EN-VG-HuBERT slightly
outperforms the VG-HuBERT on the SpokenCOCO and JA-
VG-W2V2 achieves the highest results on the SpokenSTAIR.
Hence, EN-VG-HuBERT and JA-VG-W2V2 are chosen as the
self-supervised VGS models for the VGSAlign system.

Speech-speech Alignment Score. We compute the F1
score towards the proposed speech-speech similarity described
in Equation 2 to evaluate the speech-speech alignment perfor-
mance. For comparison, we also calculate topline text-text simi-
larity when transcription is known. Here, the text-text similarity
is determined by computing cosine similarity [35] between the
sentence embeddings extracted from text captions of the spo-
ken speech captions. The obtained results are shown in Table
2 below. Note that we evaluate the part of 1,000 images from
the test set of the SpokenCOCO and SpokenSTAIR datasets, the
same part as the one used for experiments in Section 4.2.

Table 2: The performance of the VGSAlign system on the
speech-speech alignment F1 score (%).

Model F1-score
Text-text Alignment 84.49
VGSAlign (Speech-speech Alignment) 54.11

From the result of the VGSAlign performance, we can see
that although the speech-speech alignment result is lower than
the text-text alignment, it shows that this approach can work
with the scenario of unpaired and untranscribed languages for
deciding speech pairs based on visual semantic information.

4.4. Discussion

Speech-image alignment ability of self-supervised VGS
models. From the initial alignment results on the SpokenCOCO
and SpokenSTAIR dataset to find the pair without the demand
of texts, we hope that the VGSAlign works well on other un-
paired and untranscribed languages thanks to the ability of self-
supervised learning models to learn the speech presentation
from unlabeled data. As shown in Table 1, the self-supervised
VGS models show their ability to learn the co-representation
to find the similarity between speech and its image, which is
crucial for aligning two speech from different languages.

Speech-speech alignment ability. With the achieved re-
sults, it shows that the VGSAlign system has the potential to de-
termine whether two speech samples from different languages
are paired or not, even without any demand for text. This is a
significant premise, particularly since the lack of paired speech
data often hinders the task of direct neural speech-to-speech
translation. Training the models not on any supervised tasks, the
proposed VGSAlign system is a solution to process unknown,
untranscribed, and unpaired speech for determining and choos-
ing data for direct neural speech-to-speech translation.

5. Conclusion

In conclusion, our study demonstrated a proposed speech-
speech alignment called VGSAlign based on self-supervised
VGS models to find the similarity between speech from source
and target languages. We verified that without the need for text
and knowledge about the language, the system could determine
whether two given speeches in different languages are semanti-
cally paired by computing their similarity.

In future, we plan to do experiments and assess the per-
formance of speech-to-speech translation using data from the
VGSAlign system. Moreover, for the speech-image alignment,
we intend to investigate the speech-image co-embedding ob-
tained by the speech and image encoders of the self-supervised
VGS models to get partial pseudo-pairs of speech and image.
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