
VGSAlign: Bilingual Speech Alignment of Unpaired and Untranscribed Languages using Self-Supervised Visually Grounded Speech Models

Luan Thanh Nguyen , Sakriani Sakti @ HA3CI Laboratory, JAIST, Japan {luannt, ssakti [at] jaist.ac.jp}

INTRODUCTION

• Speech-to-Speech Translation (S2ST)

- Enhance multilingual communication
- Relies on a massive amount of parallel source-target speech data
- Parallel data is often unavailable
- Human Infants
 - Multilingual acquisition ability
 - > Allow them to acquire languages based on visual information

EXPERIMENTAL SETTINGS & RESULTS

- Data
 - SpokenCOCO with around 600K human recordings in English
 - SpokenSTAIR with around 600K synthesized speech in Japanese
- Self-supervised VGS Models
 - Speech encoder: HuBERT (base), or Wav2Vec2.0 (base)
 - Image encoder: DINO-ViT small 8x8
- Training objective with InfoNCE Loss

$$\mathcal{L}_{N} = -\mathbb{E}_{X}\left[\lograc{f_{k}\left(x_{t+k}, c_{t}
ight)}{\sum_{x_{j}\in X}f_{k}\left(x_{j}, c_{t}
ight)}
ight]$$

The paper proposes VGSAlign:

- ✓ Attempt to mimic human infants' behavior
- ✓ Aim to discover the speech pairs data for S2ST
- ✓ Find speech similarity of source and target languages based on corresponding visual context
- ✓ Utilize self-supervised visually grounded speech model
- ✓ Unable to deal with S2ST for unknown, unpaired, untranscribed languages

VGSALIGN FRAMEWORK

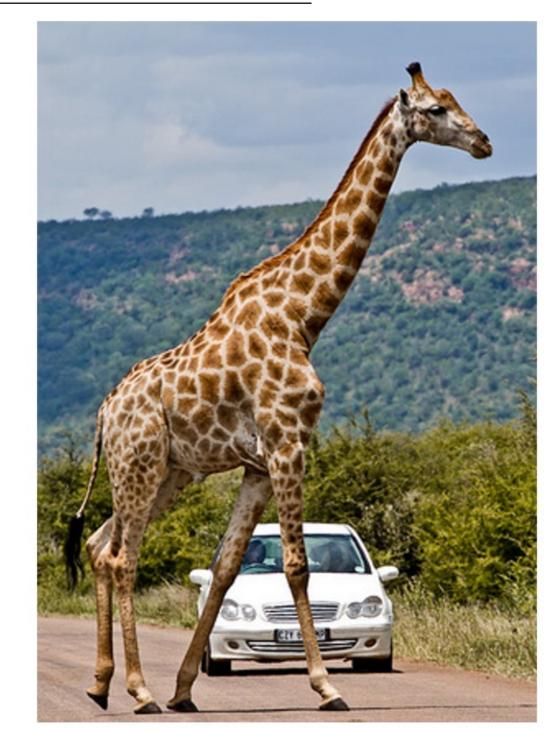
The system combines two modules:

- (1) Image-Image Similarity Module
- (2) Cross Speech-Image Similarity Module
- Leveraging self-supervised visually grounded speech models as encoders for image and audio

Similarity

• Results

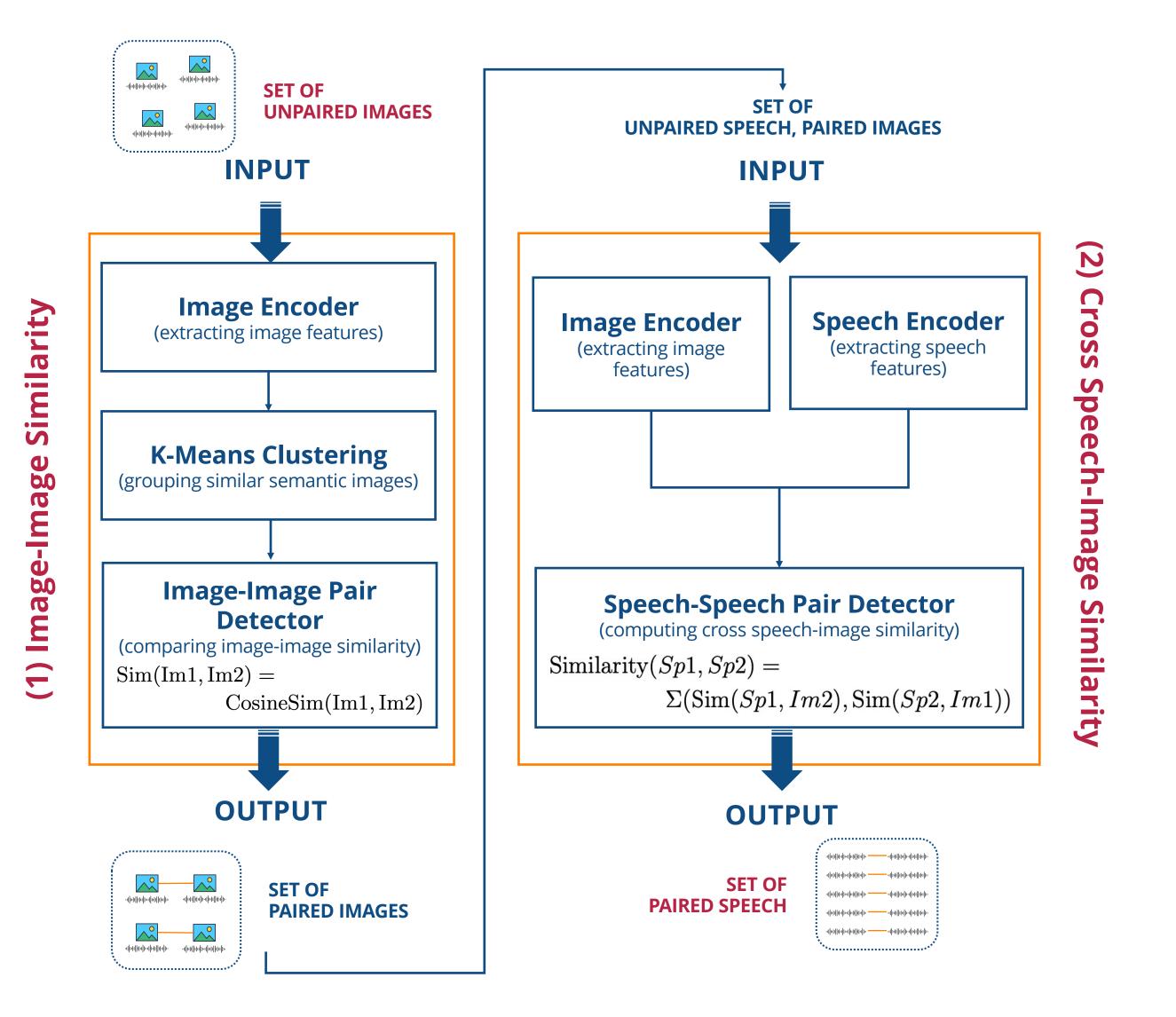
• The retrieval recall scores for the models (on SpokenCOCO (English) and


SpokenSTAIR (Japanese) test sets)

Model		Image \rightarrow Speech			$\mathbf{Speech} ightarrow \mathbf{Image}$			Average Speech ↔ Image		
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
SpokenCOCO	VG-HuBERT [1]	42.8	73.6	83.9	30.6	60.8	72.8	36.7	67.2	78.4
	EN-VG-W2V2	41.3	72.3	83.8	29.8	60.0	72.8	35.6	67.2	78.4
	EN-VG-HuBERT	44.1	74.2	84.4	31.0	60.6	72.5	37.6	67.4	78.5
SpokenSTAIR	JA-VG-HuBERT	40.3	72.3	83.2	29.7	60.0	72.3	35.0	66.2	77.8
	JA-VG-W2V2	42.0	73.1	83.3	30.3	60.3	72.7	36.2	66.7	78.0

- The performance of the VGSAlign system on the speech-speech alignment
 - F1 score (%) (determining speech pair ability)

Model	F1-score
Text-text Alignment	84.49
VGSAlign (Speech-speech Alignment)	54.11


ո<mark>լս</mark>իիսիս<mark>իսի</mark>սիիսիս/

ENGLISH SPEECH CONTEXT: A man is riding a motor bike on a road

JAPANESE SPEECH CONTEXT: 一人の<mark>男性がバイク</mark>に乗っている (A man is riding a motor bike)

al o de la contra de

Figure 1: Bilingual speech alignment by visual-based information. (Note: The image is from the MS-COCO dataset)

・リリリリリリリリリー Speech context: 大きなキリンが車の前の荒野で道 路を横切っています (A large giraffe is crossing the road in the wilderness in front of the car) ախիլիսիալիսին

Speech context: A LARGE GIRAFFE WALKING ACROSS THE ROAD IN FRONT OF A CAR

Figure 3: Speech-speech pair determined by the VGSAlign framework.

(Note: The image is from the MS-COCO dataset)

CONCLUSIONS

- VGSAlign can be applied to any other languages
- Allow mapping speech from the source to the target languages
- Able to determine whether two given speech in different languages are semantically paired without the need for text and knowledge about the language

FUTURE DIRECTIONS

Figure 2: The overview of the VGSAlign framework.

- Perform speech-to-speech translation for unknown, unpaired, untranscribed
 - languages by using data from the VGSAlign system
- Investigate the obtained speech-image co-embeddings in order to get pseudo-speech-speech pairs

REFERENCES

[1] P. Peng et al., "Word discovery in visually grounded, self-supervised speech models", INTERSPEECH 2022

[2] A. Baevski et al., "Wav2Vec 2.0: A Framework for Self-supervised Learning of Speech Representations", NeurIPS 2020

[3] W. Hsu et al., "HuBERT: Self-supervised Speech Representation Learning by Masked Prediction of Hidden Units", IEEE/ACM Transactions on Audio, Speech, and Language Processing 2021

In the Proceedings of the 2nd Annual Meeting of the Special Interest Group on Under-resourced Languages, INTERSPEECH Satellite Workshop 2023