Konkani Integer Phonetic Transcription System

Swapnil Fadte ${ }^{1}$, Edna Vaz Fernandes ${ }^{2}{ }^{3}$, Hanumant Redkar ${ }^{1}$, Teja Kundaikar ${ }^{1}$, Ramdas Karmali ${ }^{1}$, Jyoti D. Pawar ${ }^{1}$

${ }^{1}$ Discipline of Computer Science and Technology, Goa Business School, Goa University, India
${ }^{2}$ Department of Konkani, Govt. College of Arts Science and Commerce Quepem, Goa India
${ }^{3}$ University of Mumbai, India
swapnil.fadte@unigoa.ac.in, edna.vaz22@gmail.com, hanumantredkar@unigoa.ac.in, teja.kundaikar@unigoa.ac.in, rnk@unigoa.ac.in, jdp@unigoa.ac.in

Abstract

This paper describes an ongoing work on the Phonetic Dictionary for Konkani language. In this work, we have build a resource that would phonetically transcribe Konkani Integers and generate their written form in the Devanagari script. The algorithm developed in this work takes an integer as an input and generates its written form in the Devanagari script, along with its phonetic transcription in the International Phonetic Alphabet (IPA). Our algorithm is a rule-based system in which phonetic transcriptions of numerals are created using rules from the available literature and for some cases we have proposed new forms for the numerals. The algorithm has been made robust enough to automatically give a written form of any Konkani numeral in the Devanagari script, along with its equivalent IPA transcription. This work is the first step towards providing an open-source phonetic dictionary for Konkani language. We have tried to keep the phonetic transcriptions as much as closer to their natural pronunciations. This is done for the purpose of capturing the general tendency of the language. So, for example, while the number ' 8 ' आठ [$\mathrm{a}^{\mathrm{h}}{ }^{\mathrm{h}}$] is written with an aspirated retroflex consonant ठ $\left[\mathrm{t}^{\mathrm{h}}\right.$], the final consonant $\left[\mathrm{t}^{\mathrm{h}}\right.$] is heard without aspiration in the actual speech. This loss of aspiration at word final position generally happens across all the consonants of the language, in the Konkani varieties spoken in Goa.

Index Terms: Konkani, Konkani Speech data, phonetic dictionary, integers, Devanagari, integer dictionary

1. Introduction

India is a multilingual country having various languages and dialects. Konkani is the official language of the state of Goa (India). It belongs to the Indo-Aryan language family. The constitution of India - the document that lays down the framework which demarcates fundamental political code, structure, procedures, powers, and duties of government institutions and sets out fundamental rights, directive principles, and the duties of citizens, in its Eighth Schedule ("list") (Articles 344(1) and 351), recognizes 22 Regional languages as official languages [1]. Speakers of Scheduled Languages enjoy some advantages over the speakers of the non-scheduled languages. For example, the members of the parliament are allowed to speak and present their views in their language if it is one of the Scheduled languages. The Seventy-First Amendment to the Constitution on $20^{\text {th }}$ August 1992, added Konkani to the list of Scheduled languages. The official script for Konkani is Devanagari. Numerals are usually written in the Devanagari script. However, they are also written as per the Arabic writing system for ease of communication.

2. Motivation

When we read any text written in a certain script, we encounter characters, numerals and punctuation marks. Anyone who understands a certain script will be able to read any language written in that script. However, when it comes to the reading (pronunciation) of numerals, one needs to follow certain rules. For example, if the integer 1234 is to be read as some value of currency, it needs to be read as "One Thousand Two Hundred Thirty Four" or "Twelve Hundred Thirty Four". Similar rules for integers will also be applicable to the pronunciation of Konkani integers. There are a few machine translation systems available for Konkani[2, 3], but they do not provide text transcriptions of Konkani Numerals. Also, testing of Konkani integers in the text representation on Google translator showed a good amount of errors. Following are some representative examples where we can see a combination of text with numerals. Such instances of data in a text corpus could pose a big challenge for any system that aims to transcribe data accurately.

1. "ता. १ फेब्रुवारी २०२२" [ta. ek februvari don hə $\widehat{d z a r}$ baviss] ('dtd. $1^{\text {st }}$ February 2022'). The above character and numeral combination refers to a specific date and a year. While 9 'one' in 9 फेब्रुवारी ' 1 st February' might be easily transcribed as $e k$ (februvari) by any system, the numeral 2022 which is a year, has to be read and transcribed as दोन हजार बावीस [don hə $\overparen{\text { dzar }}$ baviss] "two thousand twenty-two" and not as दोन शुन्य दोन दोन [don $\int u n j{ }^{\circ}$ don don] "two zero two two". Thus, it is important that the system correctly identifies the context in which a numeral appears so that it can generate a proper transcription of the same.
2. "सकाळीं 08:00 ते 10:00 वरांमेरेन" [səkal \tilde{i} a:t ${ }^{h}$ t $\varepsilon d^{h} a$ vərãmeren] '(from) morning 8 to 10 a.m.' (Lit. morning 8 to 10 hours till). This phrase specifies a certain time of the day. The system needs to acknowledge this context of time and generate a string that reads the numerals as hours (and minutes in some other temporal context).
3. "गोंयचें क्षेत्रफळ 3701 चौखण किलोमिटर आसा." [gõjff $\tilde{\varepsilon}$ $\mathrm{k} \int$ etrə'fəl ti:n hədzar sat $\int \varepsilon$ ek $\widehat{\text { tsouk }}^{\mathrm{h}}$ ə , kilomitər asa] ('The (total) area of Goa is 3701 sq . kms.'). The numeral in the above sentence specifies the area of the region of Goa. The accepted way of reading the numeral in this sentence is considering the entire string of numbers as one unit, i.e., as तीन हजार सातशे एक [ti:n həतิzar sat $\int \varepsilon \mathrm{ek}$] (Lit. "Three thousand Seven Hundred One") and not as individual numbersतीन सात शुन्य एक [ti:n sat $\int u n j{ }^{\text {a }} \mathrm{ek}$] 'Three Seven Zero One'.
4. "माशेलाचो पिन कोड 403 107." [mafelatso pin'kod. $\overparen{\text { tfar }}$ Junj ${ }^{\text {a }}$ ti:n ek Junj ${ }^{\ominus}$ sa:t] ('The pin code of Marcela is 403 107'). Postal Index Number (PIN or simply PIN Code) refers to the
six-digit number used by India Post in its postal code system. More commonly, the numbers indicating such a code are read by spelling out the numerals as discrete units. The Pin code in the above example needs to be read and transcribed as चार शुन्य तीन एक शुन्य सात [$\overparen{\mathrm{t}}$ ar $\int \mathrm{unnj}{ }^{\circ}$ ti:n ek $\int u n j{ }^{\circ}$ sa:t] 'Four Zero Three One Zero Seven'.
5. "ताचो फोन नंबर 9850403 107" [tatfo fon nəmbər nəu
 fon nəmbər nain et faiv dziro forr $\widehat{\text { dziro }} \mathrm{t}^{\mathrm{h}}$ ri vən $\widehat{\text { dziro }}$ sevən]('His phone number is 9850403 107'). Phone numbers can be read differently by different speakers. However, reading the numbers as discrete units would be a good way to spell out the long number string.
From the above examples, it is clear that the numerals in any given sentence do not lend themselves to same type of output in the spoken and consequently in the written form. While the numerals in example 1 and example 3 are read as (a date and) a year and area respectively, the numerals in example 2 do not undergo much change in the way they are read/pronounced (and hence written) except for the need to write them in the Devanagari script. Similarly, while the numerals in example 4 are read as individual items, there could be other ways some speakers might want to read (pronounce) these. The same holds for the numerals mentioned in example 5 which allow different combinations for pronunciations. Given this background, an accurate transcription of the numerals that adheres to the speaking and writing rules of the language is of great relevance for developing a good transcription System.

3. Scope of the work

Through our work, we have made an effort to develop an automatic system for Konkani language that gives the phonetic as well as Devanagari transcription of a given integer. This is the first kind of work that aims to automatically transcribe Konkani numerals appearing in different contexts into the officially recognised Devanagari script along with the pronunciation of the numerals (given in IPA). As of now, our system only handles the transcriptions of numerals in a positional number system.

4. The proposed system

We are presenting here an automatic phonetic transcription system for Konkani Integers. The system takes an integer as an input and generates its representation in word (the written form) along with its phonetic transcription. Figure 1 diagrammatically presents the system developed by us.

5. Methodology

This section describes the implementation of the system and transcription rules that were used in the Algorithm design.

5.1. Implementation details

The implementation consists of two parts. In the first part, the input is processed and standardised. In the second part, the standardised input is transcribed.

5.1.1. Script conversion

This is the first and the simplest component of the system which takes the input either in Devanagari or Roman digits and converts

Figure 1: Integer Transcription System Diagram.
it to Roman numerals. This is achieved by converting the input value to a new string representation by one-to-one mapping of the digits.

5.1.2. Integer transcription

This is the main component of the system. It converts the integer into its spoken form (its pronunciation in Konkani) by applying conversion rules and using a dictionary database for the numbers and their corresponding pronunciation. These rules and mappings are presented in a tabular form and explained in detail in section 5.2 below. The algorithm for the transcription is created using these rules. It takes the integer and checks its length. Depending on the length of integer, it then calls for two sub algorithms: Left and Right transcription. Both Left and Right transcription works recursively and completes the transcription and results are merged and returned as final transcription of integers. Although it is rare to get an integer with a large number (length) in practice, ours algorithm can handle an integer of any length.

```
Data: integer
Result: transcription_text
\(y \leftarrow " " ;\)
\(X \leftarrow\) input;
\(N \leftarrow \operatorname{len}(X) ;\)
if \(N \geq 12\) then
    RIGHT \(\leftarrow\) assign last 11 didgits;
    \(L E F T \leftarrow X / 10^{11} ; \quad / *\) removing last 11
        digits from \(\mathrm{X} * /\)
    \(y \leftarrow\) left_transcription \((L E F T)+\)
        +postion_mapping(12) +
        right_transcription(RIGHT)
else
    \(y \leftarrow\) right_transcription \((X) ;\)
end
```

Algorithm 1: Integer transcription.

5.2. Identification of transcription rules

First, we have identified word transcription for integers. Devanagari transcription provided in Table 1 is from [4]. However, phonetic transcription for integers is not available. This is proposed and provided here for the first time. Rules for transcription for the integers one to hundred are directly mapped and are provided in Table 1. For example, the integer 63 will be mapped

Sr No	Devanagari	Roman	IPA	Devanagari Transcription	Sr No	Devanagari	Roman	IPA	Devanagari Transcription
1	9	1	［e：k］	एक	51	49	51	［عkavən］	एकावन
2	2	2	［do：n］	दोन	52	42	52	［bavən］	बावन
3	3	3	［tim］	तीन	53	43	53	［treppən］	त्रेप्पन
4	8	4	［t．jarr］	चार	54	48	54	［t Soupən］	चौपन
5	4	5	［pãats］	पांच	55	44	55	［pãntsavən］	पंचावन
6	६	6	［si：］	स	56	4\％	56	［t f^{h} appən］	छाप्पन
7	ϑ	7	［sa：t］	सात	57	40	57	［səttavən］	सत्तावन
8	c	8	［a：t ］	आठ	58	4 C	58	［ət，tavən］	अठ्ठावन
9	ρ	9	［ $\$ ว̃v］ & णव & 59 & 49 & 59 & ［ekunsat］ & एकुणसाठ \hline 10 & 90 & 10 & ［d ${ }^{\text {h }} \mathrm{a}$ ］$]$	धा	60	६०	60	［sa：t ${ }^{\text {h }}$ ］	साठ
11	99	11	［ikra］	इकरा	61	६9	61	［eksət］	एकसठ
12	92	12	［bara］	बारा	62	६र	62	［bãsət］	बांसठ
13	9३	13	［tera］	तेरा	63	६३	63	［trẽət］	त्रेंसठ
14	98	14	［tfiuda］	चवदा	64	६४	64	［tsiusət］	चवसठ
15	94	15	［pəndra］	पंदरा	65	६५	65	［pãsət］	पांसठ
16	9६	16	［sola］	सोळा	66	६६	66	［sãsət］	सांसठ
17	96	17	［sitra］	सतरा	67	६७	67	［satsət］	सातसठ
18	$9<$	18	［itra］	अठरा	68	६く	68	［atsot］	आठसठ
19	99	19	［ekunis］	एकुणीस	69	६९	69	［ekunsittir］	एकुणसत्तर
20	20	20	［viss］	वीस	70	७०	70	［sitti］	सत्तर
21	29	21	［ekvis］	एकवीस	71	69	71	［عkjattər］	एक्यात्तर
22	22	22	［bavis］	बावीस	72	७2	72	［bjattor］	ब्यात्तर
23	२३	23	［ tevis］	तेवीस	73	७३	73	［trjattər］	त्र्यात्तर
24	28	24	［tfovis］	चोवीस	74	७४	74	［ ［tsəudjattər］	चवद्यात्तर
25	24	25	［pãntfvis］	पंचवीस	75	$७ 4$	75	［pəntfattor］	पंच्यात्तर
26	र६	26	［sivvis］	सव्वीस	76	७६	76	［ ${ }^{\text {attor］}}$	शात्तर
27	$2 ७$	27	［sətavis］	सत्तावीस	77	७७	77	［səttjattor］	सत्यात्तर
28	$2<$	28	［əttavis］	अठ्ठावीस	78	७く	78	［ətt ${ }^{\text {h }}$ jattər］	अठ्ठ्यात्तर
29	2ρ	29	［ekunis］	एकुणतीस	79	69	79	［ekuñ̃jJi］	एकुणअंयशी
30	३०	30	［tiss］	तीस	80	CO	80	［ãjJfi］	अंयशी
31	39	31	［ektis］	एकतीस	81	く9	81	［عkjãjfi］	एक्यांयशी
32	३2	32	［bottis］	बत्तीस	82	く2	82	［bjãjJi］	ब्यांयशी
33	३३	33	［tettis］	तेत्तीस	83	く3	83	［trãjfi］	त्र्यायशीं
34	३४	34	［tsivtis］	चवतीस	84	く	84	［ $\widehat{\text { tsəudjajJi］}}$	चवद्यांयशी
35	34	35	［pastis］	पस्तीस	85	く4	85	［pãntfãjfī］	पंच्यांयशीं
36	३६	36	［t \int^{h} əttis］	छत्तीस	86	く६	86	［ $\int a ̃ j$ ji］	श्यांयशीं
37	३७	37	［sattis］	सात्तीस	87	くも	87	［səttjãjJfi］	सत्त्यांयशीं
38	३く	38	［attis］	आठ्ठीस	88	くく	88		अठ्ठ्यांयशी
39	३९	39	［ekuntfalis］	एकुणचाळीस	89	くら	89	［ekunŋəขvəd］	एकुणणव्वद
40	80	40	［tfalis］	चाळीस	90	९०	90	［ఇəขขəd］	णव्वद
41	89	41	［eketfalis］	एकेचाळीस	91	$\rho 9$	91	［عkjannãv］	एक्याण्णव
42	82	42	［betfalis］	बेचाळीस	92	$\rho २$	92	［bjanఇว̃v］	ब्याण्णव
43	४३	43	［tretfalis］	त्रेचाळीस	93	$\rho 3$	93	［trjanఇว̃ง］	त्र्याण्णव
44	88	44	［tsəvetfalis］	चवेचाळीस	94	98	94	［ttsəudjanŋว̃ง］	चवद्याण्णव
45	84	45	［pəntfalis］	पंचेचाळीस	95	$\rho 4$	95	［pãntfanఇว̃v］	पंच्याण्णव
46	४६	46	［ e ¢ \int alis］	शेचाळीस	96	$\rho ६$	96	［Jan，${ }^{\text {a }}$ ］］	शाण्णव
47	$8 ७$	47	［sattetfalis］	सत्तेचाळीस	97	$\rho ७$	97	［səttjannãv］	सत्त्याण्णव
48	8 ¢	48	［2ttetfalis］	अठ्ठेचाळीस	98	$\rho く$	98	［ətt ${ }^{\text {h janñ̃u］}}$	अठ्ठ्याण्णव
49	89	49	［ekunpənnas］	एकुणपन्नास	99	$\rho \rho$	99		णव्याण्णव
50	40	50	［pənnas］	पन्नास	100	900	100	［［imbir］	शंबर

Table 1：Integer mapping rules for integers till 100.
to［trẽsət，त्रेंसठ］．Table 2 provides the details of positional tran－ scription for hundred，thousand，lakh and crore（ten million）and so on．Table 2 can be consider as a snapshot of the algorithm for various lengths．For example，the integer 1234567 gets posi－ tional transcription from Sr．no 4 in Table 2．The algorithm cal－ culates the length and splits the integer into two sub－strings and calls two sub－tasks which recursively calculate the transcription for these two integer strings．There are other interesting cases like，the numeral multiples of 50 usually have multiple pronun－ ciations．for e．g．integer 150 has two common transcriptions and 1500 has four transcriptions．Table 3 shows a few examples for the similar cases．Pronunciation rules for powers of ten till 10^{30} are provided in Table 4．Technically，it can go to infinite with recursive logic for integer transcription．

6．Results and discussion

The output of the phonetic transcription system is shown in fig－ ure 2．The algorithm is coded using Python and can be ac－ cessed using this link ${ }^{1}$ ．As regards the phonetic transcription of the integers，we have attempted an accurate transcription of the same．However，one needs to remember that these pronun－ ciations are with regard to our observations about the Konkani spoken in Goa．E．g．，as pointed out earlier，the integer written as आठ［a：t ${ }^{\text {h }}$ ］is mostly pronounced as आट［a：t］i．e．，without aspi－ ration unlike its written counterpart．The same is true for other integers having aspirated consonants in word final positions or

[^0]Data: integer
Result: transcription_text

```
\(y \leftarrow ">\);
\(X \leftarrow\) input;
\(N \leftarrow \operatorname{len}(X)\);
if \(N \leq 2\) then
    if \(N==0\) then
        \(y \leftarrow " " ;\)
    else
        \(y \leftarrow\) integer_mapping ()\(; / *\) Using table
            1 transcription rule */
    end
else
    if \(N \leq 3\) then
        if \(N==100\) then
        \(y \leftarrow\) integer_mapping ()
        else
            \(y \leftarrow\) integer_mapping ()\(+\)
            position_mappings(3) +
            right_transcription(RIGHT)
        end
    else
        if \(N \leq 5\) then
    \(y \leftarrow\) integer_mapping ()\(+\)
                            position_mapping(4) +
                        right_transcription(RIGHT)
        else
            if \(N \leq 7\) then
                                \(y \leftarrow\) integer_mapping ()\(+\)
                                position_mapping(6) +
                                right_transcription(RIGHT)
            else
                        if \(N \leq 9\) then
                                \(y \leftarrow\) integer_mapping ()\(+\)
                                position_mapping(8) +
                                right_transcription(RIGHT)
                    else
                        \(y \leftarrow\) integer_mapping ()\(+\)
                        position_mapping(10) +
                        right_transcription(RIGHT)
            end
            end
        end
    end
end
```

Algorithm 2: right_transcription.
Data: integer
Result: transcription_text
$y \leftarrow ">$;
$X \leftarrow$ input;
$N \leftarrow \operatorname{len}(X)$;

if $N \geq 11$ then

RIGHT \leftarrow assign last 9 digits;

$L E F T \leftarrow X / 10^{9} ; \quad / *$ removing last 9 digits from X */
$y \leftarrow$ left_transcription $($ LEFT $)+$
position_mapping(10) +
right_transcription(RIGHT)
else
$y \leftarrow$ right_transcription (X)
end
Algorithm 3: left_transcription.

Sr No	Integer length	IPA	Devanagari Transcription
$\mathbf{1}$	3	$\left[\int \varepsilon\right]$	शे
$\mathbf{2}$	4	$[$ hədzar $]$	हजार
$\mathbf{3}$	6	$\left[\mathrm{lak}^{\mathrm{h}}\right]$	लाख
$\mathbf{4}$	8	$\left[\mathrm{koti}^{\mathrm{i}}\right]$	कोटी
$\mathbf{5}$	10	$[$ ərəb]	अरब
$\mathbf{6}$	12	$\left[\mathrm{k}^{\mathrm{h}}\right.$ ərəb] $]$	खरब

Table 2: Position mapping rules.

Sr No	Integer	IPA	Devanagari Transcription
1	150	[ekshe pənnas]	एकशे पन्नास
2	150	[ded.fi]	देडशीं
3	250	[don $\int \varepsilon$ pənnas]	दोनशे पन्नास
4	250	[ədidzfe]	अडीजशे
5	350	[tinfe pennas]	तिनशे पन्नास
6	350	[sade tinfe]	साडेतिनशे
7	1150	[ek hədzar ekshe pənnas]	एक हजार एकशे पन्नास
8	1150	[ek hədzar ded.fi]	एक हजार देडशीं
9	1150	[ikrafe pənnas]	इकराशे पन्नास
10	1150	[sade'ikrafe]	साडेइकराशे

Table 3: Multiple transcription rules for numerals above 100.

Sr No	Integer	IPA	Devanagari Transcription
1	10^{1}	[d ${ }^{\text {a }}$:]	धा
2	10^{2}	[$\int \varepsilon /$ /jimbir]	शे/शंबर
3	10^{3}	[e:k hədzar]	एक हजार
4	10^{4}	[d ${ }^{\text {h }}$ a: hədzar]	धा हजार
5	10^{5}	[lak ${ }^{\text {h }}$]	एक लाख
6	10^{6}	[d ${ }^{\text {h }} \mathrm{a}: \mathrm{lak}^{\mathrm{h}}$]	धा लाख
7	10^{7}	[e:k koti]	एक कोटी
8	10^{8}	[d ${ }^{\text {h a }}$: koti]	धा कोटी
9	10^{9}	[e:k ərəb/Jimbir koti]	एक अरब/शंबर कोटी
10	10^{10}	[$\mathrm{d}^{\mathrm{h}} \mathrm{a}$: ərəb]	धा अरब
11	10^{11}	[e:k k ${ }^{\text {h }}$ rəəb]	एक खरब
12	10^{12}	[$\mathrm{d}^{\mathrm{h}} \mathrm{a}: \mathrm{k}^{\mathrm{h}}$ ərəb/lak ${ }^{\text {h }}$ koti]	धा खरब/एक लाख कोटी
13	10^{13}	[3 imbir k^{h} ərəb]	शंबर खरब
14	10^{14}	[e:k hədzar k^{h} ərəb]	एक हजार खरब
15	10^{15}	[d ${ }^{\mathrm{h}} \mathrm{a}$: hədzar k^{h} ərəb]	धा हजार खरब
16	10^{20}	[e:k ərəb k ${ }^{\text {h }}$ ərəb]	एक अरब खरब
17	10^{25}	[e:k lak ${ }^{\text {h }}$ ərəb k ${ }^{\text {h }}$ ərəb]	एक लाख अरब खरब
18	10^{30}	[${ }^{\mathrm{h}} \mathrm{a}$: ərəb ərəb k^{h} ərəb]	धा अरब अरब खरब

Table 4: Transcription rules for powers of ten.
word medial positions (as in the case of अठरा, अठ्ठावीस, etc.). Loss of aspiration especially at word-final position is common in Konkani varieties spoken in Goa.

```
Input : 100563910
Output in Devanagari : धा कोटी पांच लाख त्रेंसठ हजार णवशे धा
Output in IPA : d'a: koti pã:t`s lak trẽsət
    həd`zar nว̃u\int\tilde{\varepsilon}\mp@subsup{d}{}{\textrm{h}}\textrm{a}:
```

Figure 2: Integer Conversion.

7. Conclusion and future work

In this work, we have presented a system that transcribes Konkani integers into the officially recognised Devanagari script along with the IPA transcriptions of the numerals. The current system can technically handle integers of infinite length. As a future work it can be extended for fractions, dates, scientific numbers, phone numbers, etc.

8. References

[1] The Constitution of India, Eighth schedule, Article(s): 344(1) and 351, Description: Official languages, 1950.
[2] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Łukasz Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, "Google's neural machine translation system: Bridging the gap between human and machine translation," 2016.
[3] M. Junczys-Dowmunt, "Microsoft translator at WMT 2019: Towards large-scale document-level neural machine translation," in Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1). Florence, Italy: Association for Computational Linguistics, Aug. 2019, pp. 225233. [Online]. Available: https://aclanthology.org/W19-5321
[4] G. K. Academy, Konkani Shuddhalekhanache Nem 5th Edition. Secretary,Goa Konkani Akademi 243, Patto Colony, Panaji , Goa 403 001: Goa Konkani Academy, 1972.

[^0]: ${ }^{1}$ https：／／github．com／SwapnilFadte／Konkani＿integer＿ transcription．git

