Konkani Integer Phonetic Transcription System

Edna Vaz Fernandes ${ }^{23}$

Hanumant Redkar ${ }^{1}$
Teja Kundaikar ${ }^{1}$
Ramdas Karmali
1 Jyoti D. Pawar
${ }^{1}$ Discipline of Computer Science and Technology, Goa Business School. Goa University, India
${ }^{2}$ Department of Konkani. Govt. College of Arts Science and Commerce Quepem. Goa India
${ }^{2}$ University of Mumbai. India

Abstract

In this work, we have built a resource that would phonetically transcribe Konkani Integers and generate their written form in the Devanagari script. The algorithm developed in this work made robust enough to automatically give a written form of any Konkani numeral in the Devanagari
script, along with its equivalent IPA transcription. We have tried to keep the phonetic transcrip script, along wit to their natural pronunciations. This is done for the purpose of capturing the general tendency of the language. So, for example, while the number ' 8 ' आठ [ath] is written with an aspirated retroflex consonant $\delta\left[t^{h}\right]$, the final consonant $\left[t^{h}\right]$ is heard without aspiration in the actual speech. This loss of aspiration at word final position generally happens across all the consonants of the language, in the Konkani varieties spoken in the state of Goa in India.

Introduction

India is a multilingual country having various languages and dialects. An Indian language Konkani which belongs to Indo-Aryan language family, is an official language of the state of Goa in India. Anyone who understands a certain script can read any language written in that script. However, when it comes to the reading (pronunciation) of numerals, one needs to follow certain rules. Following are some representative examples in Konkani where we can see a com bination of text with numerals. Such data instances in a text corpus could pose a big challeng for any system that aims to transcribe text accurately.

1. "ता. १ फेब्बवारी २०२२" [ta. ek februvari don hədzar bavi:s] ('dtd. $1^{\text {st }}$ February 2022'). The above character and numeral combination refers to a specific date and a year. While 9 'one in 9 फेब्रुवारी '1st February' might be easily transcribed as ek (februvari) by any system, the numeral 2022 which is a year, has to be read and transcribed as दोन हजार बावीस [don hədZ̄ar bavi:s] "two thousand twenty-two" and not as दोन शुन्य दोन दोन [don funij don don] two zero two two
"सकाळी 08:00 ते $10: 00$ वरांमेरेन" [səkali a:th t ε dha vərãmeren] '(from) morning 8 to 10 a.m.' (Lit. morning 8 to 10 hours tili). This phrase specifies a certain time of the day. The system hours (and minutes in some other temporalcontext).
2. "गोंयचें क्षेत्रफळ 3701 चोखण किलोमिटर आसा." [gö̃ffé kjetrə'fəl ti:n həđZ̄ar satf ek Esook'ən kilomitor asa] ('The (total) area of Goa is 3701 sq . kms.'). The numeral in the above sentence specifies the area of the region of Goa. The numbers should be read as one unit, i.e., as तीन हजार सातशे एक [ti:n həचzar satf ek] (Lit. "Three thousand Seven Hundred One") and not as individual numbers
3. "माशेलाचो पिन कोड 403 107." [maflatşsว pin'kod Far funjə ti:n ek funj) sa:t] ('The pin code of Marcela is 403107^{\prime}). Postal Index Number (PIN or simply PIN Code) refers to the six-dig
number used by India Post in its postal code system More commonly the numbers indicating such a code are read by spelling out the numerals as discrete units.
4. "ताचो फोन नंबर 9850403 107" [tat̄j fon nəmbər nəv a:th pä:Ts funjə ta:r funjə tin e:k Junjə sa:t / tat̄J fon nambar nain et faiu dziro fo:r dziro thri van dziro sevanl('His phone number is sa:t / tatto fon nəmbər nain et faiu dziro fo:r dziro trivən dziro sevən](His phone number is
9850403 107'). Phone numbers can be read differently by different speakers. However, reading the numbers as discrete units is a good way to spell out the long number string.
The table 1 represents the position mapping rules that were used for phonetic transcription.

Table 1. Position mapping rules.

Scope of the Work

We have made an effort to develop an automatic system for Konkani language that gives the phonetic as well as Devanagari transcription of a given integer. This is the first kind of work that aims to automatically transcribe Konkani numerals appearing in different contexts into the officially recognised Devanagari script along with the pronunciation of the numerals (in IPA).

Algorithms

$$
\begin{aligned}
& \text { Data: integer } \\
& \text { Result: transcription_text } \\
& \begin{array}{l}
y \leftarrow " 》 ; \\
X \leftarrow \text { input } ;
\end{array} \\
& N \leftarrow \operatorname{len}(X) \text {; } \\
& \text { if } N \geq 12 \text { then } \\
& \text { Algorithm 1: Integer transcription. } \\
& \text { Data: integer } \\
& \text { Result: transcription_text } \\
& \begin{array}{l}
y \leftarrow " " ; \\
X \leftarrow \text { input } ;
\end{array} \\
& \begin{array}{l}
N \leftarrow \operatorname{len}(X) \text {; } \\
\text { if } N \leq 2 \text { then }
\end{array} \\
& \begin{array}{l}
\text { if } N==0 \text { then }
\end{array} \\
& \begin{array}{l}
\mid y \leftarrow " \\
\text { else }
\end{array} \\
& \underset{\text { end }}{ } y \leftarrow \text { int_mapping () ; /* Using table } 1 \text { transcription rule */ } \\
& \text { else }{ }^{\text {end }} \\
& \text { else } \text { if } N \leq 3 \text { then } \\
& \begin{array}{l}
\text { if } N \leq 3 \text { then } \\
\left.\left\lvert\, \begin{array}{c}
\text { if } N==100 \text { then } \\
\mid \\
\text { else } \\
\mid \quad y \leftarrow \text { int_mapping }() \\
\mid
\end{array}\right.\right)
\end{array} \\
& \underset{\text { end }}{\text { | }} y \leftarrow \text { int_mapping }()+\text { pos_mappings }(3)+\operatorname{right_ trans~}(R) \\
& \text { else } \\
& \text { else } \text { if } N \leq 5 \text { then } \\
& \begin{array}{l}
\text { if } N \leq 5 \text { then } \\
\mid y \leftarrow \text { int_mapping }()+\text { pos_mapping(} 4)+ \text { right_trans }(R) \\
\text { else }
\end{array} \\
& \text { else }{ }^{\text {if }} N \leq 7 \text { then } \\
& y \leftarrow \text { int_mapping }()+\text { pos_mapping }(6)+\text { right_trans }(R) \\
& \text { else } \text { if } N \leq 9 \text { then } \\
& \underset{\mid}{\mid} y \leftarrow \text { int_mapping }()+\text { pos_mapping }(8)+\operatorname{right_ trans~}(R) \\
& \underset{\text { end }}{\substack{\text { else } \\
\\
e} \text { int_mapping }()+\text { pos_mapping }(10)+\text { right_trans }(R)} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

Algorithm 2: right_transcription.
Data: integer
Result: transcription_text
$y \leftarrow " " ;$
$X \leftarrow$ input;
$N \leftarrow$ len (X);
if $N \geq 11$ then
$\left\lvert\, \begin{aligned} & R \leftarrow \text { assign last } 9 \text { digits; } ; \\ & L \leftarrow X / 10^{9} ;\end{aligned}\right.$
$L \leftarrow X / 10^{\circ}$; /* removing last 9 digits from X $y \leftarrow$ left_trans $(L)+$ pos_mapping $(10)+$ right_trans (R)
$\underset{\text { end }}{\text { I }} y \leftarrow$ right_trans (X)
Algorithm 3: left_transcription.

The Transcription System
This work presents an automatic phonetic transcription system for Konkani Integers. The system takes an integer as an input and generates its representation in word (the written form) alons with its phonetic transcription. Figure 1 diagrammatically presents the transcription system.

Figure 1. Integer Transcription System Diagram

Abstract

Methodology The implementation of this transcription system consists of two parts. In the first part, the input s processed and standardised. In the second part, the standardised input is transcribed. Transcription system converts the integer into its spoken form (its pronunciation in Konkani) by applying conversion rules and using a dictionary database for the numbers and their coresponding pronunciation. The algorithm for the transcription takes the integer and checks its length. Depending on the length of integer, it then calls for two sub algorithms: Left and Right transcription. Both Left and Right transcription works recursively and completes the transcripfion an integer with a large number (length) in practice ours algorithm can handle an integer of

 any length. Algorithms 1, 2 and 3 presents the implemented methodology.
Conclusion and Future Work

In this work, we have presented a system that transcribes Konkani integers into the officially recognised Devanagari script along with the IPA transcriptions of the numerals. The current syofractions, ates, scie or fractions, dates, scientific numbers, phone numbers, etc.

References

[1] C. E. Shannon, "A mathematical theory of communication," Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948
[2] G. K. Academy, Konkani Shuddhalekhanache Nem 5th Edition. Secretary,Goa Konkani Akademi 243, Patto Colony, Panaji, Goa - 403 001: Goa Konkani Academy, 1972.
[3] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, and et al., "Google's neural machine translation system: Bridging the gap between human and machine translation," 2016.
4] M. Junczys-Dowmunt, "Microsoft translator at WMT 2019: Towards large-scale document-level neural machine translation," in Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1). Florence, Italy: Association for Computational Linguistics, Aug. 2019, pp. 225-233. [Online]. Available: https://aclanthology.org/W19-5321
[5] The Constitution of India, Eighth schedule, Article(s): 344(1) and 351, Description: Official languages, 1950.

